Content deleted Content added
m +zh |
Blueplatypus (talk | contribs) Added details on propagation of errors |
||
Line 22:
where the vertical bars denote the [[absolute value]], ''a'' represents the true value, and ''b'' represents the approximation to ''a''.
==Propagation of Errors==
When calculating using approximate values it is important to be able to calculate the errors involved.
For measured values '''X & Y''' with absolute errors '''<math>\epsilon x\,</math> & <math>\epsilon y\,</math>''' and relative errors '''<math>\eta x\,</math> & <math>\eta y\,</math>''' respectivly, we can use:
* For <math>Z = X + Y\,</math>:
:<math>\epsilon z = \epsilon x + \epsilon y\,</math>
* For <math>Z = X - Y\,</math>::
:<math>\epsilon z = |\epsilon x - \epsilon y|\,</math>
* For <math>Z = X \times Y\,</math>:
:<math>\eta z = \eta x + \eta y\,</math>
* For <math>Z = X / Y\,</math>:
:<math>\eta z = |\eta x - \eta y|\,</math>
[[Category:Numerical analysis]]
|