Content deleted Content added
m category:p-adic numbers |
mNo edit summary |
||
Line 15:
The power series
:<math>\log(1+x)=\sum_{n=1}^\infty \frac{(-1)^{n+1}x^n}{n},</math>
converges for ''x'' in '''C'''<sub>''p''</sub> satisfying |''x''|<sub>''p''</sub> < 1 and so defines the '''''p''-adic logarithm function''' log<sub>''p''</sub>(''z'') for |''z'' − 1|<sub>''p''</sub> < 1 satisfying the usual property log<sub>''p''</sub>(''zw'') = log<sub>''p''</sub>''z'' + log<sub>''p''</sub>''w''. The function log<sub>''p''</sub> can be extended to all of {{SubSup|'''C'''|''p''|×}} (the set of nonzero elements of '''C'''<sub>''p''</sub>) by imposing that it continues to satisfy this last property and setting log<sub>''p''</sub>(''p'') = 0. Specifically, every element ''w'' of {{SubSup|'''C'''|''p''|×}} can be written as ''w'' = ''p<sup>r
==Properties==
Line 25:
For ''z'' in the ___domain of exp<sub>''p''</sub>, we have exp<sub>''p''</sub>(log<sub>''p''</sub>(1+''z'')) = 1+''z'' and log<sub>''p''</sub>(exp<sub>''p''</sub>(''z'')) = ''z''.
The roots of the Iwasawa logarithm log<sub>''p''</sub>(''z'') are exactly the elements of '''C'''<sub>''p''</sub> of the form ''p<sup>r
Note that there is no analogue in '''C'''<sub>''p''</sub> of [[Euler's identity]], ''e''<sup>2''πi''</sup> = 1. This is a corollary of [[Strassmann's theorem]].
|