Coding gain: Difference between revisions

Content deleted Content added
Line 14:
This definition is normalized so that <math>\gamma_c(A) = 1</math> for 2-PAM or (2&times;2)-QAM. If the average number of nearest neighbors per transmitted bit <math>K_b(A)</math> is equal to one, the effective coding gain <math>\gamma_\mathrm{eff}(A)</math> is approximately equal to the nominal coding gain <math>\gamma_c(A)</math>. However, if <math>K_b(A)>1</math>, the effective coding gain <math>\gamma_\mathrm{eff}(A)</math> is less than the nominal coding gain <math>\gamma_c(A)</math> by an amount which depends on the steepness of the <math>P_b(E)</math> ''vs.'' <math>E_b/N_0</math> curve at the target <math>P_b(E)</math>. This curve can be plotted using the [[union bound]] estimate (UBE)
 
: <math>P_b(E) \approx K_b(A)Q\left(\sqrt{\frac{2\gamma_c(A)E_b}{N_0}}\right),</math>
 
where ''Q'' is the [[error function|Gaussian probability-of-error function]].