Content deleted Content added
m Dating maintenance tags: {{Mergeto}} |
Fix generic ref name |
||
Line 4:
<!-- EDIT BELOW THIS LINE -->
'''Dynamic causal modeling''' (DCM) is a framework for specifying models, fitting them to data and comparing their evidence using [[Bayes factor|Bayesian model comparison]]. It uses nonlinear [[State space|state-space]] models in continuous time, specified using [[Stochastic differential equation|stochastic]] or [[ordinary differential equation]]s. DCM was initially developed for testing hypotheses about [[Dynamical system|neural dynamics]].<ref name="
== Procedure ==
DCM is typically used to estimate the coupling among brain regions and the changes in coupling due to experimental changes (e.g., time or context). A model of interacting neural populations is specified, with a level biological detail dependent on the hypotheses and available data. This is coupled with a forward model describing how neural activity gives rise to measured responses. Estimating the generative model identifies the parameters (e.g. connection strengths) from the observed data. [[Bayesian model comparison]] is used to compare models based on their evidence, which can then be characterised in terms of parameters.
DCM studies typically involve the following stages:<ref name="
# Experimental design. Specific hypotheses are formulated and an experiment is conducted.
Line 20:
== Experimental design ==
Functional neuroimaging experiments are typically either task-based or examine brain activity at rest ([[Resting state fMRI|resting state]]). In task-based experiments, brain responses are evoked by known deterministic inputs (experimentally controlled stimuli). These experimental variables can change neural activity through direct influences on specific brain regions, such as [[evoked potential]]s in the early visual cortex, or via a modulation of coupling among neural populations; for example, the influence of attention. These two types of input - driving and modulatory - are parameterized separately in DCM.<ref name="
Resting state experiments have no experimental manipulations within the period of the neuroimaging recording. Instead, hypotheses are tested about the coupling of endogenous fluctuations in neuronal activity, or in the differences in connectivity between sessions or subjects. The DCM framework includes models and procedures for analysing resting state data, described in the next section.
Line 38:
=== Functional MRI ===
[[File:DCM for fMRI.svg|alt=DCM for fMRI neural circuit|thumb|The neural model in DCM for fMRI. z1 and z2 are the mean levels of activity in each region. Parameters A are the effective connectivity, B is the modulation of connectivity by a specific experimental condition and C is the driving input.]]
The neural model in DCM for fMRI is a [[Taylor series|Taylor approximation]] that captures the gross causal influences between brain regions and their change due to experimental inputs (see picture). This is coupled with a detailed biophysical model of the generation of the BOLD response and the MRI signal,<ref name="
DCM for resting state studies was first introduced in Stochastic DCM,<ref>{{Cite journal|date=2011-09-15|title=Generalised filtering and stochastic DCM for fMRI|url=https://www.sciencedirect.com/science/article/pii/S1053811911001406|journal=NeuroImage|volume=58|issue=2|pages=442–457|doi=10.1016/j.neuroimage.2011.01.085|pmid=21310247|issn=1053-8119|last1=Li|first1=Baojuan|last2=Daunizeau|first2=Jean|last3=Stephan|first3=Klaas E|last4=Penny|first4=Will|last5=Hu|first5=Dewen|last6=Friston|first6=Karl}}</ref> which estimates both neural fluctuations and connectivity parameters in the time ___domain, using [[Generalized filtering|Generalized Filtering]]. A more efficient scheme for resting state data was subsequently introduced which operates in the frequency ___domain, called DCM for Cross-Spectral Density (CSD).<ref>{{Cite journal|last=Friston|first=Karl J.|last2=Kahan|first2=Joshua|last3=Biswal|first3=Bharat|last4=Razi|first4=Adeel|date=July 2014|title=A DCM for resting state fMRI|journal=NeuroImage|volume=94|pages=396–407|doi=10.1016/j.neuroimage.2013.12.009|pmid=24345387|pmc=4073651|issn=1053-8119}}</ref><ref>{{Cite journal|last=Razi|first=Adeel|last2=Kahan|first2=Joshua|last3=Rees|first3=Geraint|last4=Friston|first4=Karl J.|date=February 2015|title=Construct validation of a DCM for resting state fMRI|journal=NeuroImage|volume=106|pages=1–14|doi=10.1016/j.neuroimage.2014.11.027|issn=1053-8119|pmc=4295921|pmid=25463471}}</ref> Both of these can be applied to large-scale brain networks by constraining the connectivity parameters based on the functional connectivity.<ref>{{Cite journal|last=Seghier|first=Mohamed L.|last2=Friston|first2=Karl J.|date=March 2013|title=Network discovery with large DCMs|journal=NeuroImage|volume=68|pages=181–191|doi=10.1016/j.neuroimage.2012.12.005|issn=1053-8119|pmc=3566585|pmid=23246991}}</ref><ref name="
[[File:DCM for ERP and CMC.svg|thumb|Models of the cortical column used in EEG/MEG/LFP analysis. Self-connections on each population are present but not shown for clarity. Left: DCM for ERP. Right: Canonical Microcircuit (CMC). 1=spiny stellate cells (layer IV), 2=inhibitory interneurons, 3=(deep) pyramidal cells and 4=superficial pyramidal cells.]]
=== EEG / MEG ===
DCM for EEG and MEG data use more biologically detailed neural models than fMRI, due to the higher temporal resolution of these measurement techniques. These can be classed into physiological models, which recapitulate neural circuity, and phenomenological models, which focus on reproducing particular data features. The physiological models can be further subdivided into two classes. [http://www.scholarpedia.org/article/Conductance-based_models Conductance-based models] derive from the equivalent circuit representation of the cell membrane developed by Hodgkin and Huxley in the 1950s.<ref name="
* Physiological models:
Line 54:
***Neural Field Model (NFM).<ref>{{Cite journal|last=Pinotsis|first=D.A.|last2=Friston|first2=K.J.|date=March 2011|title=Neural fields, spectral responses and lateral connections|journal=NeuroImage|volume=55|issue=1|pages=39–48|doi=10.1016/j.neuroimage.2010.11.081|pmid=21138771|pmc=3049874|issn=1053-8119}}</ref> Extends the models above into the spatial ___domain, modelling continuous changes in current across the cortical sheet.
** Conductance models:
***Neural Mass Model (NMM) and Mean-field model (MFM).<ref>{{Cite journal|last=Marreiros|first=André C.|last2=Daunizeau|first2=Jean|last3=Kiebel|first3=Stefan J.|last4=Friston|first4=Karl J.|date=August 2008|title=Population dynamics: Variance and the sigmoid activation function|journal=NeuroImage|volume=42|issue=1|pages=147–157|doi=10.1016/j.neuroimage.2008.04.239|pmid=18547818|issn=1053-8119}}</ref><ref>{{Cite journal|last=Marreiros|first=André C.|last2=Kiebel|first2=Stefan J.|last3=Daunizeau|first3=Jean|last4=Harrison|first4=Lee M.|last5=Friston|first5=Karl J.|date=February 2009|title=Population dynamics under the Laplace assumption|journal=NeuroImage|volume=44|issue=3|pages=701–714|doi=10.1016/j.neuroimage.2008.10.008|pmid=19013532|issn=1053-8119}}</ref> These have the same arrangement of neural populations as DCM for ERP, above, but are based on the [[Morris–Lecar model|Morris-Lecar model]] of the barnacle muscle fibre,<ref>{{Cite journal|last=Morris|first=C.|last2=Lecar|first2=H.|date=July 1981|title=Voltage oscillations in the barnacle giant muscle fiber|journal=Biophysical Journal|volume=35|issue=1|pages=193–213|doi=10.1016/s0006-3495(81)84782-0|pmid=7260316|pmc=1327511|issn=0006-3495}}</ref> which in turn derives from the [[Hodgkin–Huxley model|Hodgin and Huxley]] model of the giant squid axon.<ref name="
****
* Phenomenological models:
Line 65:
== Model comparison ==
Neuroimaging studies typically investigate effects that are conserved at the group level, or which differ between subjects. There are two predominant approaches for group-level analysis: random effects Bayesian Model Selection (BMS)<ref>{{Cite journal|last=Rigoux|first=L.|last2=Stephan|first2=K.E.|last3=Friston|first3=K.J.|last4=Daunizeau|first4=J.|date=January 2014|title=Bayesian model selection for group studies — Revisited|journal=NeuroImage|volume=84|pages=971–985|doi=10.1016/j.neuroimage.2013.08.065|pmid=24018303|issn=1053-8119}}</ref> and Parametric Empirical Bayes (PEB).<ref name="
# Specify and estimate multiple DCMs per subject, where each DCM (or set of DCMs) embodies a hypothesis.
Line 71:
# Calculate the average connectivity parameters across models using Bayesian Model Averaging. This average is weighted by the posterior probability for each model, meaning that models with greater probability contribute more to the average than models with lower probability.
Alternatively, Parametric Empirical Bayes (PEB) <ref name="
# Specify a single 'full' DCM per subject, which contains all the parameters of interest.
Line 80:
Developments in DCM have been validated using different approaches:
* Face validity establishes whether the parameters of a model can be recovered from simulated data. This is usually performed alongside the development of each new model (E.g.<ref name="
* Construct validity assesses consistency with other analytical methods. For example, DCM has been compared with Structural Equation Modelling <ref>{{Cite journal|last=Penny|first=W.D.|last2=Stephan|first2=K.E.|last3=Mechelli|first3=A.|last4=Friston|first4=K.J.|date=January 2004|title=Modelling functional integration: a comparison of structural equation and dynamic causal models|journal=NeuroImage|volume=23|pages=S264–S274|doi=10.1016/j.neuroimage.2004.07.041|pmid=15501096|issn=1053-8119|citeseerx=10.1.1.160.3141}}</ref> and other neurobiological computational models.<ref>{{Cite journal|last=Lee|first=Lucy|last2=Friston|first2=Karl|last3=Horwitz|first3=Barry|date=May 2006|title=Large-scale neural models and dynamic causal modelling|journal=NeuroImage|volume=30|issue=4|pages=1243–1254|doi=10.1016/j.neuroimage.2005.11.007|pmid=16387513|issn=1053-8119}}</ref>
* Predictive validity assesses the ability to predict known or expected effects. This has included testing against iEEG / EEG / stimulation <ref>{{Cite journal|last=David|first=Olivier|last2=Guillemain|first2=Isabelle|last3=Saillet|first3=Sandrine|last4=Reyt|first4=Sebastien|last5=Deransart|first5=Colin|last6=Segebarth|first6=Christoph|last7=Depaulis|first7=Antoine|date=2008-12-23|title=Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation|journal=PLOS Biology|volume=6|issue=12|pages=2683–97|doi=10.1371/journal.pbio.0060315|issn=1545-7885|pmc=2605917|pmid=19108604}}</ref><ref>{{Cite journal|last=David|first=Olivier|last2=Woźniak|first2=Agata|last3=Minotti|first3=Lorella|last4=Kahane|first4=Philippe|date=February 2008|title=Preictal short-term plasticity induced by intracerebral 1 Hz stimulation|journal=NeuroImage|volume=39|issue=4|pages=1633–1646|doi=10.1016/j.neuroimage.2007.11.005|pmid=18155929|issn=1053-8119}}</ref><ref>{{Cite journal|last=Reyt|first=Sébastien|last2=Picq|first2=Chloé|last3=Sinniger|first3=Valérie|last4=Clarençon|first4=Didier|last5=Bonaz|first5=Bruno|last6=David|first6=Olivier|date=October 2010|title=Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation|journal=NeuroImage|volume=52|issue=4|pages=1456–1464|doi=10.1016/j.neuroimage.2010.05.021|pmid=20472074|issn=1053-8119}}</ref><ref>{{Cite journal|last=Daunizeau|first=J.|last2=Lemieux|first2=L.|last3=Vaudano|first3=A. E.|last4=Friston|first4=K. J.|last5=Stephan|first5=K. E.|date=2013|title=An electrophysiological validation of stochastic DCM for fMRI|journal=Frontiers in Computational Neuroscience|volume=6|pages=103|doi=10.3389/fncom.2012.00103|pmid=23346055|pmc=3548242|issn=1662-5188}}</ref> and against known pharmacological treatments.<ref>{{Cite journal|last=Moran|first=Rosalyn J.|last2=Symmonds|first2=Mkael|last3=Stephan|first3=Klaas E.|last4=Friston|first4=Karl J.|last5=Dolan|first5=Raymond J.|date=August 2011|title=An In Vivo Assay of Synaptic Function Mediating Human Cognition|journal=Current Biology|volume=21|issue=15|pages=1320–1325|doi=10.1016/j.cub.2011.06.053|pmid=21802302|pmc=3153654|issn=0960-9822}}</ref><ref>{{Cite journal|last=Moran|first=Rosalyn J.|last2=Jung|first2=Fabienne|last3=Kumagai|first3=Tetsuya|last4=Endepols|first4=Heike|last5=Graf|first5=Rudolf|last6=Dolan|first6=Raymond J.|last7=Friston|first7=Karl J.|last8=Stephan|first8=Klaas E.|last9=Tittgemeyer|first9=Marc|date=2011-08-02|title=Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents|journal=PLoS ONE|volume=6|issue=8|pages=e22790|doi=10.1371/journal.pone.0022790|pmid=21829652|pmc=3149050|issn=1932-6203}}</ref>
== Limitations / drawbacks ==
DCM is a hypothesis-driven approach for investigating the interactions among pre-defined regions of interest. It is not ideally suited for exploratory analyses.<ref name="
The variational Bayesian methods used for model estimation in DCM are based on the Laplace assumption, which treats the posterior over parameters as Gaussian. This approximation can fail in the context of highly non-linear models, where local minima may preclude the free energy from serving as a tight bound on log model evidence. Sampling approaches provide the gold standard; however, they are time consuming and have typically been used to validate the variational approximations in DCM.<ref>{{Cite journal|last=Chumbley|first=Justin R.|last2=Friston|first2=Karl J.|last3=Fearn|first3=Tom|last4=Kiebel|first4=Stefan J.|date=November 2007|title=A Metropolis–Hastings algorithm for dynamic causal models|journal=NeuroImage|volume=38|issue=3|pages=478–487|doi=10.1016/j.neuroimage.2007.07.028|pmid=17884582|issn=1053-8119}}</ref>
Line 95:
* [http://www.scholarpedia.org/article/Dynamic_causal_modeling Dynamic Causal Modelling on Scholarpedia]
* Ten simple rules for dynamic causal modeling<ref name="
* Understanding DCM: ten simple rules for the clinician<ref>{{Cite journal|last=Kahan|first=Joshua|last2=Foltynie|first2=Tom|date=December 2013|title=Understanding DCM: Ten simple rules for the clinician|journal=NeuroImage|volume=83|pages=542–549|doi=10.1016/j.neuroimage.2013.07.008|pmid=23850463|issn=1053-8119}}</ref>
* Neural masses and fields in dynamic causal modeling<ref>{{Cite journal|last=Moran|first=Rosalyn|last2=Pinotsis|first2=Dimitris A.|last3=Friston|first3=Karl|date=2013|title=Neural masses and fields in dynamic causal modeling|journal=Frontiers in Computational Neuroscience|volume=7|pages=57|doi=10.3389/fncom.2013.00057|pmid=23755005|pmc=3664834|issn=1662-5188}}</ref>
|