Dynamic causal modeling: Difference between revisions

Content deleted Content added
Fix generic ref name
m WP:AWB cleanup, replaced: → (11)
Line 1:
{{mergetomerge to|Dynamic causal modelling|date=March 2019}}
{{short description|Statistical modeling framework}}
{{close paraphrasing|date=September 2018}}<!-- Do not remove this line! -->
Line 51:
*** DCM for evoked responses (DCM for ERP).<ref>{{Cite journal|last=David|first=Olivier|last2=Friston|first2=Karl J.|date=November 2003|title=A neural mass model for MEG/EEG|journal=NeuroImage|volume=20|issue=3|pages=1743–1755|doi=10.1016/j.neuroimage.2003.07.015|issn=1053-8119}}</ref><ref>{{Citation|last=Kiebel|first=Stefan J.|date=2009-07-31|pages=141–170|publisher=The MIT Press|isbn=9780262013086|last2=Garrido|first2=Marta I.|last3=Friston|first3=Karl J.|doi=10.7551/mitpress/9780262013086.003.0006|chapter=Dynamic Causal Modeling for Evoked Responses|title=Brain Signal Analysis}}</ref> This is a biologically plausible neural mass model, extending earlier work by Jansen and Rit.<ref>{{Cite journal|last=Jansen|first=Ben H.|last2=Rit|first2=Vincent G.|date=1995-09-01|title=Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns|journal=Biological Cybernetics|volume=73|issue=4|pages=357–366|doi=10.1007/s004220050191|issn=0340-1200}}</ref> It emulates the activity of a cortical area using three neuronal sub-populations (see picture), each of which rests on two operators. The first operator transforms the pre-synaptic firing rate into a Post-Synaptic Potential (PSP), by [[Convolution|convolving]] pre-synaptic input with a synaptic response function (kernel). The second operator, a [[Sigmoid function|sigmoid]] function, transforms the membrane potential into a firing rate of action potentials.
*** DCM for LFP (Local Field Potentials).<ref>{{Cite journal|last=Moran|first=R.J.|last2=Kiebel|first2=S.J.|last3=Stephan|first3=K.E.|last4=Reilly|first4=R.B.|last5=Daunizeau|first5=J.|last6=Friston|first6=K.J.|date=September 2007|title=A neural mass model of spectral responses in electrophysiology|journal=NeuroImage|volume=37|issue=3|pages=706–720|doi=10.1016/j.neuroimage.2007.05.032|pmid=17632015|pmc=2644418|issn=1053-8119}}</ref> Extends DCM for ERP by adding the effects of specific ion channels on spike generation.
*** Canonical Microcircuit (CMC).<ref>{{Cite journal|last=Bastos|first=Andre  M.|last2=Usrey|first2=W.  Martin|last3=Adams|first3=Rick  A.|last4=Mangun|first4=George  R.|last5=Fries|first5=Pascal|last6=Friston|first6=Karl  J.|date=November 2012|title=Canonical Microcircuits for Predictive Coding|journal=Neuron|volume=76|issue=4|pages=695–711|doi=10.1016/j.neuron.2012.10.038|pmid=23177956|pmc=3777738|issn=0896-6273}}</ref> Used to address hypotheses about laminar-specific ascending and descending connections in the brain, which underpin the [[predictive coding]] account of functional brain architectures. The single pyramidal cell population from DCM for ERP is split into deep and superficial populations (see picture). A version of the CMC has been applied to model multi-modal MEG and fMRI data.<ref>{{Cite journal|last=Friston|first=K.J.|last2=Preller|first2=Katrin H.|last3=Mathys|first3=Chris|last4=Cagnan|first4=Hayriye|last5=Heinzle|first5=Jakob|last6=Razi|first6=Adeel|last7=Zeidman|first7=Peter|date=February 2017|title=Dynamic causal modelling revisited|journal=NeuroImage|doi=10.1016/j.neuroimage.2017.02.045|pmid=28219774|issn=1053-8119}}</ref>
***Neural Field Model (NFM).<ref>{{Cite journal|last=Pinotsis|first=D.A.|last2=Friston|first2=K.J.|date=March 2011|title=Neural fields, spectral responses and lateral connections|journal=NeuroImage|volume=55|issue=1|pages=39–48|doi=10.1016/j.neuroimage.2010.11.081|pmid=21138771|pmc=3049874|issn=1053-8119}}</ref> Extends the models above into the spatial ___domain, modelling continuous changes in current across the cortical sheet.
** Conductance models:
Line 82:
* Face validity establishes whether the parameters of a model can be recovered from simulated data. This is usually performed alongside the development of each new model (E.g.<ref name="Friston 2003" /><ref name="Stephan 2008" />).
* Construct validity assesses consistency with other analytical methods. For example, DCM has been compared with Structural Equation Modelling <ref>{{Cite journal|last=Penny|first=W.D.|last2=Stephan|first2=K.E.|last3=Mechelli|first3=A.|last4=Friston|first4=K.J.|date=January 2004|title=Modelling functional integration: a comparison of structural equation and dynamic causal models|journal=NeuroImage|volume=23|pages=S264–S274|doi=10.1016/j.neuroimage.2004.07.041|pmid=15501096|issn=1053-8119|citeseerx=10.1.1.160.3141}}</ref> and other neurobiological computational models.<ref>{{Cite journal|last=Lee|first=Lucy|last2=Friston|first2=Karl|last3=Horwitz|first3=Barry|date=May 2006|title=Large-scale neural models and dynamic causal modelling|journal=NeuroImage|volume=30|issue=4|pages=1243–1254|doi=10.1016/j.neuroimage.2005.11.007|pmid=16387513|issn=1053-8119}}</ref>
* Predictive validity assesses the ability to predict known or expected effects. This has included testing against iEEG / EEG / stimulation <ref>{{Cite journal|last=David|first=Olivier|last2=Guillemain|first2=Isabelle|last3=Saillet|first3=Sandrine|last4=Reyt|first4=Sebastien|last5=Deransart|first5=Colin|last6=Segebarth|first6=Christoph|last7=Depaulis|first7=Antoine|date=2008-12-23|title=Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation|journal=PLOS Biology|volume=6|issue=12|pages=2683–97|doi=10.1371/journal.pbio.0060315|issn=1545-7885|pmc=2605917|pmid=19108604}}</ref><ref>{{Cite journal|last=David|first=Olivier|last2=Woźniak|first2=Agata|last3=Minotti|first3=Lorella|last4=Kahane|first4=Philippe|date=February 2008|title=Preictal short-term plasticity induced by intracerebral 1  Hz stimulation|journal=NeuroImage|volume=39|issue=4|pages=1633–1646|doi=10.1016/j.neuroimage.2007.11.005|pmid=18155929|issn=1053-8119}}</ref><ref>{{Cite journal|last=Reyt|first=Sébastien|last2=Picq|first2=Chloé|last3=Sinniger|first3=Valérie|last4=Clarençon|first4=Didier|last5=Bonaz|first5=Bruno|last6=David|first6=Olivier|date=October 2010|title=Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation|journal=NeuroImage|volume=52|issue=4|pages=1456–1464|doi=10.1016/j.neuroimage.2010.05.021|pmid=20472074|issn=1053-8119}}</ref><ref>{{Cite journal|last=Daunizeau|first=J.|last2=Lemieux|first2=L.|last3=Vaudano|first3=A. E.|last4=Friston|first4=K. J.|last5=Stephan|first5=K. E.|date=2013|title=An electrophysiological validation of stochastic DCM for fMRI|journal=Frontiers in Computational Neuroscience|volume=6|pages=103|doi=10.3389/fncom.2012.00103|pmid=23346055|pmc=3548242|issn=1662-5188}}</ref> and against known pharmacological treatments.<ref>{{Cite journal|last=Moran|first=Rosalyn  J.|last2=Symmonds|first2=Mkael|last3=Stephan|first3=Klaas  E.|last4=Friston|first4=Karl  J.|last5=Dolan|first5=Raymond  J.|date=August 2011|title=An In  Vivo Assay of Synaptic Function Mediating Human Cognition|journal=Current Biology|volume=21|issue=15|pages=1320–1325|doi=10.1016/j.cub.2011.06.053|pmid=21802302|pmc=3153654|issn=0960-9822}}</ref><ref>{{Cite journal|last=Moran|first=Rosalyn J.|last2=Jung|first2=Fabienne|last3=Kumagai|first3=Tetsuya|last4=Endepols|first4=Heike|last5=Graf|first5=Rudolf|last6=Dolan|first6=Raymond J.|last7=Friston|first7=Karl J.|last8=Stephan|first8=Klaas E.|last9=Tittgemeyer|first9=Marc|date=2011-08-02|title=Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents|journal=PLoS ONE|volume=6|issue=8|pages=e22790|doi=10.1371/journal.pone.0022790|pmid=21829652|pmc=3149050|issn=1932-6203}}</ref>
 
== Limitations / drawbacks ==