Content deleted Content added
-space |
singular/plural match |
||
Line 15:
When [[plutonium-238]]/beryllium primary sources are utilized, they can be either affixed to [[control rod]]s which are removed from the reactor when it is powered, or clad in a [[cadmium]] alloy, which is opaque to thermal neutrons (reducing transmutation of the plutonium-238 by neutron capture) but transparent to [[fast neutron]]s produced by the source.<ref name="pat1" />
* '''Secondary sources''', originally inert, become radioactive and neutron-producing only after [[neutron activation]] in the reactor. Due to this, they tend to be less expensive. Exposure to thermal neutrons also serves to maintain the source activity (the radioactive isotopes are both burned and generated in neutron flux).
** [[Antimony|Sb]]-[[Beryllium|Be]] [[photoneutron]] source; antimony [[neutron activation|becomes radioactive]] in the reactor and its strong gamma emissions (1.7 MeV for <sup>124</sup>Sb) interact with [[beryllium-9]] by an (γ,n) reaction and provide [[photoneutron]]s. In a [[Pressurized water reactor|PWR reactor]] one neutron source rod contains 160 grams of antimony, and
The chain reaction in the first critical reactor, [[Chicago_Pile-1|CP-1]], was initiated by a radium-beryllium neutron source. Similarly, in modern reactors (after startup), delayed neutron emission from fission products suffices to sustain the amplification reaction while yielding controllable growth times. In comparison, a bomb is based on immediate neutrons and grows exponentially in nanoseconds.
|