Content deleted Content added
Rescuing orphaned refs ("Schrijver" from rev 891986459) |
Citation bot (talk | contribs) m Alter: doi-broken-date, journal. Add: series, isbn, citeseerx. Removed URL that duplicated unique identifier. | You can use this bot yourself. Report bugs here.| Activated by User:Marianne Zimmerman |
||
Line 31:
George Dantzig worked on planning methods for the US Army Air Force during World War II using a desk calculator. During 1946 his colleague challenged him to mechanize the planning process to distract him from taking another job. Dantzig formulated the problem as linear inequalities inspired by the work of [[Wassily Leontief]], however, at that time he didn't include an objective as part of his formulation. Without an objective, a vast number of solutions can be feasible, and therefore to find the "best" feasible solution, military-specified "ground rules" must be used that describe how goals can be achieved as opposed to specifying a goal itself. Dantzig's core insight was to realize that most such ground rules can be translated into a linear objective function that needs to be maximized.<ref>{{Cite journal|url = http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA112060|title = Reminiscences about the origins of linear programming|date = April 1982|journal = Operations Research Letters|doi = 10.1016/0167-6377(82)90043-8|pmid = |access-date = |volume = 1|issue = 2 |pages=43–48|last1 = Dantzig|first1 = George B.}}</ref> Development of the simplex method was evolutionary and happened over a period of about a year.<ref>{{Cite journal|url = http://www.phpsimplex.com/en/Dantzig_interview.htm|title = An Interview with George B. Dantzig: The Father of Linear Programming|last = Albers and Reid|date = 1986|journal = College Mathematics Journal|doi = |pmid = |access-date = |pages = 292–314}}</ref>
After Dantzig included an objective function as part of his formulation during mid-1947, the problem was mathematically more tractable. Dantzig realized that one of the unsolved problems that [[George Dantzig#Mathematical statistics|he had mistaken]] as homework in his professor [[Jerzy Neyman]]'s class (and actually later solved), was applicable to finding an algorithm for linear programs. This problem involved finding the existence of [[Lagrange multipliers on Banach spaces|Lagrange multipliers]] for general linear programs over a continuum of variables, each bounded between zero and one, and satisfying linear constraints expressed in the form of [[Lebesgue integral]]s. Dantzig later published his "homework" as a thesis to earn his doctorate. The column geometry used in this thesis gave Dantzig insight that made him believe that the Simplex method would be very efficient.<ref>{{Cite book|url = http://www.dtic.mil/dtic/tr/fulltext/u2/a182708.pdf|title = Origins of the simplex method|last = Dantzig|first = George|date = May 1987|journal = A History of Scientific Computing|doi = 10.1145/87252.88081|pmid = |access-date = |isbn = 978-0-201-50814-7|doi-broken-date = 2019-
==Standard form==
Line 271:
| author2-link = Uri Zwick
| title = An Improved Version of the Random-Facet Pivoting Rule for the Simplex Algorithm
| journal = Proceedings of the
| pages =
| year = 2015
| doi = 10.1145/2746539.2746557
|
| isbn = 9781450335362
}}
</ref>
In 2018, it was proved that a particular variant of the simplex method is [[NP-mighty]], i.e., it can be used to solve, with polynomial overhead, any problem in NP implicitly during the algorithm's execution. Moreover, deciding whether a given variable ever enters the basis during the algorithm's execution on a given input, and determining the number of iterations needed for solving a given problem, are both [[NP-hardness|NP-hard]] problems.<ref>{{Cite journal|last=Disser|first=Yann|last2=Skutella|first2=Martin|date=2018-11-01|title=The Simplex Algorithm Is NP-Mighty|journal=ACM Trans. Algorithms|volume=15|issue=1|pages=5:1–5:19|doi=10.1145/3280847|issn=1549-6325|arxiv=1311.5935}}</ref> Computing the output of some other pivot rules was already known to be [[PSPACE-complete]]<ref>{{Citation | last = Adler | first = Ilan | last2 = Christos | first2 = Papadimitriou | author2-link = Christos Papadimitriou | last3 = Rubinstein | first3 = Aviad | title = On Simplex Pivoting Rules and Complexity Theory | journal = International Conference on Integer Programming and Combinatorial Optimization | volume = 17 | pages =
Analyzing and quantifying the observation that the simplex algorithm is efficient in practice despite its exponential worst-case complexity has led to the development of other measures of complexity. The simplex algorithm has polynomial-time [[Best, worst and average case|average-case complexity]] under various [[probability distribution]]s, with the precise average-case performance of the simplex algorithm depending on the choice of a probability distribution for the [[random matrix|random matrices]].<ref name="Schrijver" >[[Alexander Schrijver]], ''Theory of Linear and Integer Programming''. John Wiley & sons, 1998, {{isbn|0-471-98232-6}} (mathematical)</ref><ref name="Borgwardt">The simplex algorithm takes on average ''D'' steps for a cube. {{harvtxt|Borgwardt|1987}}: {{cite book|last=Borgwardt|first=Karl-Heinz|title=The simplex method: A probabilistic analysis|series=Algorithms and Combinatorics (Study and Research Texts)|volume=1|publisher=Springer-Verlag|___location=Berlin|year=1987|pages=xii+268|isbn=978-3-540-17096-9|mr=868467|ref=harv}}</ref> Another approach to studying "[[porous set|typical phenomena]]" uses [[Baire category theory]] from [[general topology]], and to show that (topologically) "most" matrices can be solved by the simplex algorithm in a polynomial number of steps.{{Citation needed|date=June 2019}} Another method to analyze the performance of the simplex algorithm studies the behavior of worst-case scenarios under small perturbation – are worst-case scenarios stable under a small change (in the sense of [[structural stability]]), or do they become tractable? Formally, this method uses fixed problems to which is added an amount of random noise, generalizing certain average-case models ("[[smoothed complexity]]").<ref>{{Cite book | last1=Spielman | first1=Daniel | last2=Teng | first2=Shang-Hua | author2-link=Shanghua Teng | title=Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing | publisher=ACM | isbn=978-1-58113-349-3 | doi=10.1145/380752.380813 | year=2001 | chapter=Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time| pages=296–305 | arxiv=cs/0111050}}</ref>
|