Holomorphic Embedding Load-flow method: Difference between revisions

Content deleted Content added
m shifted closing parenthesis
m Analytic continuation: Typo fixing, typo(s) fixed: Stahl’s → Stahl's (2)
Line 109:
Once the power series at {{math|<var>s</var>{{=}}0}} are calculated to the desired order, the problem of calculating them at {{math|<var>s</var>{{=}}1}} becomes one of [[analytic continuation]]. It should be strongly remarked that this does not have anything in common with the techniques of [[Homotopy#Applications|homotopic continuation]]. Homotopy is powerful since it only makes use of the concept of continuity and thus it is applicable to general smooth nonlinear systems, but on the other hand it does not always provide a reliable method to approximate the functions (as it relies on iterative schemes such as Newton-Raphson).
 
It can be proven<ref>L. Ahlfors, ''Complex analysis (3rd ed.)'', McGraw Hill, 1979.</ref> that algebraic curves are complete [[global analytic function]]s, that is, knowledge of the power series expansion at one point (the so-called germ of the function) uniquely determines the function everywhere on the complex plane, except on a finite number of [[Branch point#Branch cuts|branch cuts]]. Stahl’sStahl's extremal ___domain theorem<ref>G. A. Baker Jr and P. Graves-Morris, ''Padé Approximants'' (Encyclopedia of Mathematics and its Applications), Cambridge University Press, Second Ed. 2010, p. 326.</ref> further asserts that there exists a maximal ___domain for the analytic continuation of the function, which corresponds to the choice of branch cuts with minimal [[Conformal radius#Version from infinity: transfinite diameter and logarithmic capacity|logarithmic capacity]] measure. In the case of algebraic curves the number of cuts is finite, therefore it would be feasible to find maximal continuations by finding the combination of cuts with minimal capacity. For further improvements, Stahl’sStahl's theorem on the convergence of Padé Approximants<ref>H. Stahl, “The Convergence of Padé Approximants to Functions with Branch Points”, ''J. Approx. Theory'', '''91''' (1997), 139-204.
* G. A. Baker Jr and P. Graves-Morris, ''Padé Approximants'' (Encyclopedia of Mathematics and its Applications), Cambridge University Press, Second Ed. 2010, p. 326-330.</ref> states that the diagonal and supra-diagonal Padé (or equivalently, the continued fraction approximants to the power series) converge to the maximal analytic continuation. The zeros and poles of the approximants remarkably accumulate on the set of [[Branch point#Branch cuts|branch cuts]] having minimal capacity.