Cosmological lithium problem: Difference between revisions

Content deleted Content added
Observed abundance of lithium: clarified that the exact ratio/amount is debated
Rescuing 1 sources and tagging 0 as dead. #IABot (v2.0beta15)
Line 41:
Older stars seem to have less lithium than they should, and some younger stars have much more.<ref name="MWoo"/> The lack of lithium in older stars is apparently caused by the "mixing" of lithium into the interior of stars, where it is destroyed,<ref name=cld>{{Cite news |url=http://www.universetoday.com/476/why-old-stars-seem-to-lack-lithium/ |title=Why Old Stars Seem to Lack Lithium |date=16 August 2006 |author=Cain, Fraser |deadurl=no |archiveurl=https://web.archive.org/web/20160604044857/http://www.universetoday.com/476/why-old-stars-seem-to-lack-lithium/ |archivedate=4 June 2016 |df=dmy-all }}</ref> while lithium is produced in younger stars. Though it [[lithium burning|transmutes]] into two atoms of [[helium]] due to collision with a [[proton]] at temperatures above 2.4 million degrees Celsius (most stars easily attain this temperature in their interiors), lithium is more abundant than current computations would predict in later-generation stars.<ref name=emsley/><ref name="Cain">{{cite web|url=http://www.universetoday.com/24593/brown-dwarf/|archiveurl=https://web.archive.org/web/20110225032434/http://www.universetoday.com/24593/brown-dwarf/|archivedate=25 February 2011|title=Brown Dwarf |accessdate=17 November 2009 |last=Cain |first=Fraser |publisher=Universe Today}}</ref>
 
[[File:Nova Centauri 2013 ESO.jpg|thumb|[[Nova Centauri 2013]] is the first in which evidence of lithium has been found.<ref>{{cite web|title=First Detection of Lithium from an Exploding Star|url=http://www.eso.org/public/news/eso1531/|accessdate=29 July 2015|deadurl=noyes|archiveurl=https://wwwweb.webcitationarchive.org/6aNmJZ6sh?url=web/20150801001700/http://www.eso.org/public/news/eso1531/|archivedate=291 JulyAugust 2015|df=dmy-all}}</ref>]]
<!-- dummy edit to identify attribution ; can be deleted. -->
Lithium is also found in [[brown dwarf]] substellar objects and certain anomalous orange stars. Because lithium is present in cooler, less-massive brown dwarfs, but is destroyed in hotter [[red dwarf]] stars, its presence in the stars' spectra can be used in the "lithium test" to differentiate the two, as both are smaller than the Sun.<ref name=emsley/><ref name="Cain"/><ref>{{cite web|url=http://www-int.stsci.edu/~inr/ldwarf3.html |archive-url=https://archive.is/20130521055905/http://www-int.stsci.edu/~inr/ldwarf3.html |dead-url=yes |archive-date=21 May 2013 |title=L Dwarf Classification|accessdate=6 March 2013 | first =Neill | last = Reid | date = 10 March 2002}}</ref>