Contrast transfer function: Difference between revisions

Content deleted Content added
m Reverting possible vandalism by 2601:C6:8400:9CB1:5DB9:6A42:EE6C:3AC6 to version by 2601:C6:8400:9CB1:8CFF:97BF:F673:2F65. Report False Positive? Thanks, ClueBot NG. (3632283) (Bot)
Removed URL that duplicated unique identifier. Removed parameters. | You can use this tool yourself. Report bugs here.
Line 1:
[[Image:Contrast transfer function.jpg|thumb|Power spectrum (Fourier transform) of a typical electron micrograph. The effect of the contrast transfer function can be seen in the alternating light and dark rings (Thon rings), which show the relation between contrast and spatial frequency. ]]
 
The '''contrast transfer function''' (CTF) mathematically describes how aberrations in a [[transmission electron microscope]] (TEM) modify the image of a sample.<ref name=":0">{{Cite journal|url = http://www.sciencedirect.com/science/article/pii/0304399192900118|title = A brief look at imaging and contrast transfer|last = Wade|first = R. H.|date = October 1992|journal = Ultramicroscopy|doi = 10.1016/0304-3991(92)90011-8|pmid = |access-date =|volume=46|issue = 1–4|pages=145–156}}</ref><ref name="Spence1982">Spence, John C. H. (1988 2nd ed) ''Experimental high-resolution electron microscopy'' (Oxford U. Press, NY) {{ISBN|0195054059}}.</ref><ref name="Reimer97">Ludwig Reimer (1997 4th ed) ''Transmission electron microscopy: Physics of image formation and microanalysis'' (Springer, Berlin) [https://books.google.com/books?id=3_84SkJXnYkC preview].</ref><ref name="Kirkland1998">Earl J. Kirkland (1998) ''Advanced computing in electron microscopy'' (Plenum Press, NY).</ref> This contrast transfer function (CTF) sets the resolution of [[high-resolution transmission electron microscopy]] (HRTEM), also known as phase contrast TEM.
 
By considering the recorded image as a CTF-degraded true object, describing the CTF allows the true object to be [[reverse-engineered]]. This is typically denoted CTF-correction, and is vital to obtain high resolution structures in three-dimensional electron microscopy, especially [[cryo-electron microscopy]]. Its equivalent in light-based optics is the [[optical transfer function]].
Line 165:
 
=== Non-linear imaging theory ===
In practically all crystalline samples, the specimens will be strong scatterers, and will include multiple scattering events. This corresponds to [[Dynamical theory of diffraction|dynamical diffraction]]. In order to account for these effects, ''non-linear imaging theory'' is required. With crystalline samples, diffracted beams will not only interfere with the transmitted beam, but will also interfere with each other. This will produce second order diffraction intensities. Non-linear imaging theory is required to model these additional interference effects.<ref>{{Cite journal|url = http://www.sciencedirect.com/science/article/pii/0304399188902306|title = Contrast Transfer Theory for Non-Linear Imaging|last = Bonevich, Marks|date = May 24, 1988|journal = Ultramicroscopy|doi = 10.1016/0304-3991(88)90230-6|pmid = |access-date =|volume=26|issue = 3|pages=313–319}}</ref><ref>This page was prepared in part for Northwestern University class MSE 465, taught by Professor Laurie Marks.</ref>
 
== See also ==