Two-way analysis of variance: Difference between revisions

Content deleted Content added
Alter: author. Add: author-link. Removed URL that duplicated unique identifier. Removed accessdate with no specified URL. | You can use this tool yourself. Report bugs here.
Line 3:
 
==History==
In 1925, [[Ronald Fisher]] mentions the two-way ANOVA in his celebrated book, ''[[Statistical Methods for Research Workers]]'' (chapters 7 and 8). In 1934, [[Frank Yates]] published procedures for the unbalanced case.<ref>{{cite journal |last=Yates |first=Frank |date=March 1934 |title=The analysis of multiple classifications with unequal numbers in the different classes |jstor=2278459 |journal=Journal of the American Statistical Association |volume=29 |issue=185 |pages=51–66 |doi=10.1080/01621459.1934.10502686}}</ref> Since then, an extensive literature has been produced. The topic was reviewed in 1993 by [[Yasunori Fujikoshi]].<ref>{{cite journal |last=Fujikoshi |first=Yasunori |date=1993 |title=Two-way ANOVA models with unbalanced data |url=http://www.sciencedirect.com/science/article/pii/0012365X9390410U |journal=Discrete Mathematics |volume=116 |issue=1 |pages=315–334 |doi=10.1016/0012-365X(93)90410-U |accessdate=19 June 2014}}</ref> In 2005, [[Andrew Gelman]] proposed a different approach of ANOVA, viewed as a [[multilevel model]].<ref>{{cite journal |last=Gelman |first=Andrew |date=February 2005 |title=Analysis of variance? why it is more important than ever |journal=The Annals of Statistics |volume=33 |issue=1 |pages=1–53 |doi=10.1214/009053604000001048 |url=http://projecteuclid.org/euclid.aos/1112967698 |accessdate=19 June 2014}}</ref>
 
==Data set==
Line 13:
 
==Model==
Upon observing variation among all <math>n</math> data points, for instance via a [[histogram]], "[[Probability theory|probability]] may be used to describe such variation".<ref>{{cite journal |last=Kass |first=Robert E |date=1 February 2011 |title=Statistical inference: The big picture |url=http://projecteuclid.org/euclid.ss/1307626554 |journal=[[Statistical Science]] |volume=26 |issue=1 |pages=1–9 |doi=10.1214/10-sts337|pmid=21841892 |pmc=3153074 |arxiv=1106.2895 }}</ref> Let us hence denote by <math>Y_{ijk}</math> the [[random variable]] which observed value <math>y_{ijk}</math> is the <math>k</math>-th measure for treatment <math>(i,j)</math>. The '''two-way ANOVA''' models all these variables as varying [[Independence (probability theory)|independently]] and [[Normal distribution|normally]] around a mean, <math>\mu_{ij}</math>, with a constant variance, <math>\sigma^2</math> ([[homoscedasticity]]):
 
<math>Y_{ijk} \, | \, \mu_{ij}, \sigma^2 \; \overset{\mathrm{i.i.d.}}{\sim} \; \mathcal{N}(\mu_{ij}, \sigma^2)</math>.
Line 62:
{{Reflist}}
== References ==
* {{cite book |author=[[George Casella]] |date=18 April 2008 |title=Statistical design |url=https://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-75964-7 |publisher=[[Springer Science+Business Media|Springer]] |isbn=978-0-387-75965-4 |series=Springer Texts in Statistics |author-link=George Casella }}
 
[[Category:Analysis of variance]]