Content deleted Content added
More about conditional CDFs. |
→Measure-theoretic formulation: fix missing definition |
||
Line 84:
==Measure-theoretic formulation==
Let <math>(\Omega, \mathcal{F}, P)</math> be a probability space, <math>\mathcal{G} \subseteq \mathcal{F}</math> a <math>\sigma</math>-field in <math>\mathcal{F}</math>, and <math>X : \Omega \to \mathbb{R}</math> a real-valued random variable (measurable with respect to the Borel <math>\sigma</math>-field <math>\mathcal{R}^1</math> on <math>\mathbb{R}</math>). Given <math>A\in \mathcal{F}</math>, the [[Radon-Nikodym theorem]] implies that there is<ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a <math>\mathcal{G}</math>-measurable integrable random variable <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math> so that <math>\int_G P(A\mid\mathcal{G})(\omega) dP(\omega)=P(A\cap G)</math> for every <math>G\in \mathcal{G}</math>, and such a random variable is uniquely defined up to sets of probability zero. It can then be shown that there exists<ref>[[#billingsley95|Billingsley (1995)]], p. 439</ref> a function <math>\mu : \mathcal{R}^1 \times \Omega \to \mathbb{R}</math> such that <math>\mu(\cdot, \omega)</math> is a probability measure on <math>\mathcal{R}^1</math> for each <math>\omega \in \Omega</math> (i.e., it is [[Regular conditional probability|'''regular''']]) and <math>\mu(H, \cdot) = P(X
:<math>E[X \mid \mathcal{G}] = \int_{-\infty}^\infty x \, \mu(d x, \cdot)</math>
almost surely.
|