Content deleted Content added
added how to generate Bayes consistent losses |
added table of losses |
||
Line 31:
:<math>f^*_{0/1}(\vec{x}) \;=\; \begin{cases} \;\;\;1& \text{if }p(1\mid\vec{x}) > p(-1\mid \vec{x}) \\ \;\;\;0 & \text{if }p(1\mid\vec{x}) = p(-1\mid\vec{x}) \\ -1 & \text{if }p(1\mid\vec{x}) < p(-1\mid\vec{x}) \end{cases}</math>.
A loss function
For convex margin loss <math>\phi(\upsilon)</math>, it can be shown that <math>\phi(\upsilon)</math>is Bayes consistent if and only if it is differentiable at 0 and <math>\phi'(0)=0</math><ref>{{Cite journal|last=Bartlett|first=Peter L.|last2=Jordan|first2=Michael I.|last3=Mcauliffe|first3=Jon D.|date=2006|title=Convexity, Classification, and Risk Bounds|url=https://www.jstor.org/stable/30047445|journal=Journal of the American Statistical Association|volume=101|issue=473|pages=138–156|issn=0162-1459}}</ref><ref name="mit" />. Yet, this result does not exclude the existence of non-convex Bayes consistent loss functions. A more general result states that Bayes consistent loss functions can be generated using the following formulation <ref name="robust"> {{Citation|last=Masnadi-Shirazi|first=Hamed|title=On the Design of Loss Functions for Classification: theory, robustness to outliers, and SavageBoost|url=http://www.svcl.ucsd.edu/publications/conference/2008/nips08/NIPS08LossesWITHTITLE.pdf|publisher=Statistical Visual Computing Laboratory, University of California, San Diego|accessdate=6 December 2014|last2=Vasconcelos|first2=Nuno}}</ref> <math>\phi(v)=C[f^{-1}(v)]+(1-f^{-1}(v))C'[f^{-1}(v)]</math>,
where <math>f(\eta), (0\leq \eta \leq 1)</math> is any invertible function such that <math>f^{-1}(-v)=1-f^{-1}(v)</math> and <math>C(\eta)</math>is any differentiable strictly concave function such that <math>C(\eta)=C(1-\eta)</math>. Table-I shows the generated Bayes consistent loss functions for some different choices of <math>C(\eta)</math>and <math>f^{-1}(v)</math>. Note that the Savage and Tangent loss are not convex. Such non-convex loss functions have been shown to be useful in dealing with outliers in classification<ref name="robust" /><ref>{{Cite journal|last=Leistner|first=C.|last2=Saffari|first2=A.|last3=Roth|first3=P. M.|last4=Bischof|first4=H.|date=2009-9|title=On robustness of on-line boosting - a competitive study|url=https://ieeexplore.ieee.org/document/5457451|journal=2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops|pages=1362–1369|doi=10.1109/ICCVW.2009.5457451}}</ref>.
{| class="wikitable"
|+Table-I
!Loss Name
!<math>\phi(v)</math>
!<math>C(\eta)</math>
!<math>f^{-1}(v)</math>
|-
|Exponential
|<math>e^{-v}</math>
|<math>2\sqrt{\eta(1-\eta)}</math>
|<math>\frac{e^{2v}}{1+e^{2v}}</math>
|-
|Logistic
|<math>\frac{1}{\ln(2)}\ln(1+e^{-v})</math>
|<math>\frac{1}{\ln(2)}[-\eta\ln(\eta)-(1-\eta)\ln(1-\eta)]</math>
|<math>\frac{e^v}{1+e^v}</math>
|-
|Square
|<math>(1-v)^2</math>
|<math>4\eta(1-\eta)</math>
|<math>\frac{1}{2}(v+1)</math>
|-
|Savage
|<math>\frac{1}{(1+e^v)^2}</math>
|<math>\eta(1-\eta)</math>
|<math>\frac{e^v}{1+e^v}</math>
|-
|Tangent
|<math>(2\arctan(v)-1)^2</math>
|<math>4\eta(1-\eta)</math>
|<math>\arctan(v)+\frac{1}{2}</math>
|}
==Simplifying expected risk for classification==
|