Loss functions for classification: Difference between revisions

Content deleted Content added
cross entropy loss
generate exp loss
Line 131:
 
== Exponential loss ==
The exponential loss function iscan definedbe generated using (2) and Table-I as follows
 
:<math>\phi(v)=C[f^{-1}(v)]+(1-f^{-1}(v))C'[f^{-1}(v)] = 2\sqrt{(\frac{e^{2v}}{1+e^{2v}})(1-\frac{e^{2v}}{1+e^{2v}})}+(1-\frac{e^{2v}}{1+e^{2v}})(\frac{1-\frac{2e^{2v}}{1+e^{2v}}}{\sqrt{\frac{e^{2v}}{1+e^{2v}}(1-\frac{e^{2v}}{1+e^{2v}})}}) = e^{-v}</math>
:<math>V(f(\vec{x}),y) = e^{-\beta yf(\vec{x})}</math>
 
It penalizes incorrect predictions more than Hinge loss and has a larger gradient.