Content deleted Content added
m WP:AWB cleanup, replaced: → (4) |
No edit summary |
||
Line 44:
\end{bmatrix}
\end{matrix}</math>}}
In [[mathematics]], an '''alternating sign matrix''' is a [[square matrix]] of 0s, 1s, and −1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. These matrices generalize [[Permutation matrix|permutation matrices]] and arise naturally when using [[Dodgson condensation]] to compute a determinant. They are also closely related to the [[six-vertex model]] with ___domain wall boundary conditions from [[statistical mechanics]]. They were first defined by William Mills, [[David P. Robbins|David Robbins]], and Howard Rumsey in the former context.
==Example==
|