Content deleted Content added
m →Bibliography: http → https |
→Fractals: +alt text |
||
Line 75:
=== Fractals ===
{{see also|Fractal antenna}}
[[file:Hilbert resonator.svg|thumb|upright|alt=diagram|Three-iteration Hilbert fractal resonator in microstrip<ref>Janković ''et al.'', p. 197</ref>]]
The use of [[fractal]] curves as a circuit component is an emerging field in distributed element circuits.<ref>Ramadan ''et al.'', p. 237</ref> Fractals have been used to make resonators for filters and antennae. One of the benefits of using fractals is their space-filling property, making them smaller than other designs.<ref>Janković ''et al.'', p. 191</ref> Other advantages include the ability to produce [[wide-band]] and [[Multi-band device|multi-band]] designs, good in-band performance, and good [[out-of-band]] rejection.<ref>Janković ''et al.'', p. 191–192</ref> In practice, a true fractal cannot be made because at each [[Iterated function system|fractal iteration]] the manufacturing tolerances become tighter and are eventually greater than the construction method can achieve. However, after a small number of iterations, the performance is close to that of a true fractal. These may be called ''pre-fractals'' or ''finite-order fractals'' where it is necessary to distinguish from a true fractal.<ref>Janković ''et al.'', p. 196</ref>
|