Loss functions for classification: Difference between revisions

Content deleted Content added
added mu to plot caption
Logistic loss: change line
Line 126:
The logistic loss function can be generated using (2) and Table-I as follows
 
:<math>\begin{align}
:<math>\phi(v)=C[f^{-1}(v)]+(1-f^{-1}(v))C'[f^{-1}(v)] =\frac{1}{\log(2)}[\frac{-e^v}{1+e^v}\log(\frac{e^v}{1+e^v})-(1-\frac{e^v}{1+e^v})\log(1-\frac{e^v}{1+e^v}))]+(1-\frac{e^v}{1+e^v})[\frac{-1}{\log(2)}(\log(\frac{\frac{e^v}{1+e^v}}{1-\frac{e^v}{1+e^v}}))]=\frac{1}{\log(2)}\log(1+e^{-v}).</math>
\phi(v) &= C[f^{-1}(v)]+(1-f^{-1}(v))C'[f^{-1}(v)] \\
:<math>\phi(v)&=C[f^{-1}(v)]+(1-f^{-1}(v))C'[f^{-1}(v)] =\frac{1}{\log(2)}[\frac{-e^v}{1+e^v}\log(\frac{e^v}{1+e^v})-(1-\frac{e^v}{1+e^v})\log(1-\frac{e^v}{1+e^v}))]+(1-\frac{e^v}{1+e^v})[\frac{-1}{\log(2)}(\log(\frac{\frac{e^v}{1+e^v}}{1-\frac{e^v}{1+e^v}}))]=\frac{1}{\log(2)}\log(1+e^{-v}).</math>
\\ &=\frac{1}{\log(2)}\log(1+e^{-v}).
\end{align}</math>
 
The logistic loss is convex and grows linearly for negative values which make it less sensitive to outliers. The logistic loss is used in the [[LogitBoost|LogitBoost algorithm]].