Pollard's rho algorithm for logarithms: Difference between revisions

Content deleted Content added
m Reflist
pollards lamda(kangaroo) is a separate algorithm with its own wiki page, removed spam link referencing it
Tag: references removed
Line 7:
==Algorithm==
 
Let <math>G</math> be a [[cyclic group]] of order <math>p</math>, and given <math>\alpha, \beta\in G</math>, and a partition <math>G = S_0\cup S_1\cup S_2</math>, let <math>f:G\to G</math> be the mapmapand define maps <math>g:G\times\mathbb{Z}\to\mathbb{Z}</math> and <math>h:G\times\mathbb{Z}\to\mathbb{Z}</math> by
 
==Algorithm Pollard Rho kangaroo==
Pollard kangaroo solved <ref>https://gitlab.com/bitfranke/pollard-rho-kangaroo</ref>
:<math>
f(x) = \begin{cases}
\beta x & x\in S_0\\
x^2 & x\in S_1\\
\alpha x & x\in S_2
\end{cases}
</math>
 
and define maps <math>g:G\times\mathbb{Z}\to\mathbb{Z}</math> and <math>h:G\times\mathbb{Z}\to\mathbb{Z}</math> by
 
:<math>\begin{align}