Content deleted Content added
why it's known so widely; writing for the general reader for once |
cleaning up |
||
Line 2:
{{Short description|Continuous function that is not absolutely continuous}}
[[File:CantorEscalier.svg|thumb|right|400px| The graph of the Cantor function on the [[unit interval]] ]]
In [[mathematics]], the '''Cantor function''' is an example of a [[function (mathematics)|function]] that is [[continuous function|continuous]], but not [[absolute continuity|absolutely continuous]]. It is known as a notorious counter-example in analysis, because it challenges naive intuitions about continuity and measure. Though it is continuous everywhere and has zero derivative almost everywhere,
It is also referred to as the '''Cantor ternary function''', the '''Lebesgue function''',<ref>{{harvnb|Vestrup|2003|loc=Section 4.6.}}</ref> '''Lebesgue's singular function''', the '''Cantor–Vitali function''', the '''Devil's staircase''',<ref>{{harvnb|Thomson|Bruckner|Bruckner|2008|p=252}}.</ref> the '''Cantor staircase function''',<ref>http://mathworld.wolfram.com/CantorStaircaseFunction.html</ref> and the '''Cantor–Lebesgue function'''.<ref>{{harvnb|Bass|2013|p=28}}.</ref> {{harvs|txt|first=Georg |last=Cantor|authorlink=Georg Cantor|year=1884}} introduced the Cantor function and mentioned that Scheeffer pointed out that it was a [[counterexample]] to an extension of the fundamental theorem of calculus claimed by [[Carl Gustav Axel Harnack|Harnack]]. The Cantor function was discussed and popularized by {{harvtxt|Scheeffer|1884}}, {{harvtxt|Lebesgue|1904}} and {{harvtxt|Vitali|1905}}.
|