Content deleted Content added
Line 49:
# <math>\lambda\in\sigma(A)</math> is an isolated point in <math>\sigma(A)</math> and <math>A-\lambda I_{\mathbf{X}}</math> is [[Fredholm operator|Fredholm]] of index zero;
# <math>\lambda\in\sigma(A)</math> is an isolated point in <math>\sigma(A)</math> and the rank of the corresponding [[Riesz projector]] <math>P_\lambda</math> is finite;
# <math>\lambda\in\sigma(A)</math> is an isolated point in <math>\sigma(A)</math>, its algebraic multiplicity <math>\nu=\dim\mathfrak{L}_\lambda</math> is finite, and the range of <math>A-\lambda I_{\mathbf{X}}</math> is [[Closed range theorem|closed]]. (Gohberg–Krein 1957, 1960, 1969).
▲if <math>\lambda</math> is a normal eigenvalue, then <math>\mathfrak{L}_\lambda</math> coincides with the range of the Riesz projector, <math>\mathfrak{R}(P_\lambda)</math>.
==Decomposition of the spectrum of nonselfadjoint operators==
|