Content deleted Content added
No edit summary |
|||
Line 8:
== Rationale ==
Wireless radio links suffer from frequency-selective channel interference. If the signal on one subcarrier experiences an outage, it can still be reconstructed from the energy received over other subcarriers.
== Downlink: MC-CDM ==
In the downlink (one base station transmitting to one or more terminals), MC-CDMA typically reduces to Multi-Carrier Code Division Multiplexing. All user signals can easily be synchronized, and all signals on one subcarrier experience the same radio channel properties. In such case a preferred system implementation is to take N user bits (possibly but not necessarily for different destinations), to transform these using a Walsh [[Hadamard Transform]], followed by an IFFT.
== Variants ==
Line 23 ⟶ 20:
An alternative form of multi-carrier [[CDMA]], called MC-DS-CDMA or MC/DS-CDMA, performs spreading in the time ___domain, rather than in the frequency ___domain in the case of MC-CDMA — for the special case where there is only one carrier, this reverts to standard [[DS-CDMA]].
For the case of MC-DS-CDMA where [[OFDM]] is used as the modulation scheme, the data symbols on the individual subcarriers are spread in time by multiplying the chips on a PN code by the data symbol on the subcarrier. For example, assume the PN code chips consist of {1,
2-dimensional spreading in both the frequency and time domains is also possible, and a scheme that uses 2-D spreading is [[VSF-OFCDM]] (which stands for variable spreading factor orthogonal frequency code-division multiplexing), which [[NTT DoCoMo]] is using for its [[4G]] prototype system.
Line 29 ⟶ 26:
As an example of how the 2D spreading on [[VSF-OFCDM]] works, if you take the first data symbol, ''d''<sub>0</sub>, and a spreading factor in the time ___domain, ''SF''<sub>time</sub>, of length 4, and a spreading factor in the frequency ___domain, ''SF''<sub>frequency</sub> of 2, then the data symbol, ''d''<sub>0</sub>, will be multiplied by the length-2 frequency-___domain PN codes and placed on subcarriers 0 and 1, and these values on subcarriers 0 and 1 will then be multiplied by the length-4 time-___domain PN code and transmitted on [[OFDM]] symbols 0, 1, 2 and 3.<ref>http://citeseer.ist.psu.edu/atarashi02broadband.html Broadband Packet Wireless Access Based On VSF-OFCDM And MC/DS-CDMA (2002) Atarashi et al.</ref>
[[NTT DoCoMo]] has already achieved 5
Summary
|