Numerical certification: Difference between revisions

Content deleted Content added
m References
lk
Line 1:
'''Numerical certification''' is the process of verifying the correctness of a candidate solution to a [[system of equations]]. In (numerical) computational mathematics, such as [[numerical algebraic geometry]], candidate solutions are computed algorithmically, but there is the possibility that errors have corrupted the candidates. For instance, in addition to the inexactness of input data and candidate solutions, numerical errors or errors in the discretization of the problem may result in corrupted candidate solutions. The goal of numerical certification is to provide a certificate which proves which of these candidates are, indeed, approximate solutions.
Methods for certification can be divided into two flavors: ''a priori'' certification and ''a posteriori'' certification. ''A posteriori'' certification confirms the correctness of the final answers (regardless of how they are generated), while ''a priori'' certification confirms the correctness of each step of a specific computation. A typical example of ''a posteriori'' certification is [[Stephen Smale|Smale]]'s alpha theory, while a typical example of ''a priori'' certification is [[interval arithmetic]].