Content deleted Content added
m task, replaced: Uspehi Mat. Nauk (N.S.) → Uspekhi Mat. Nauk |series=New Series |
|||
Line 1:
In mathematics, specifically in [[spectral theory]], an [[eigenvalue]] of a [[
The set of normal eigenvalues coincides with the [[discrete spectrum (mathematics)|discrete spectrum]].
==Root lineal==
Let <math>\mathfrak{B}</math> be a [[Banach space]]. The [[
: <math>\mathfrak{L}_\lambda(A)=\bigcup_{k\in\N}\{x\in\mathfrak{D}(A):\,(A-\lambda I_{\mathfrak{B}})^j x\in\mathfrak{D}(A)\,\forall j\in\N,\,j\le k;\, (A-\lambda I_{\mathfrak{B}})^k x=0\}\subset\mathfrak{B}, </math>
Line 11:
==Definition==
An [[eigenvalue]] <math>\lambda\in\sigma_p(A)</math> of a [[
# The [[algebraic multiplicity]] of <math>\lambda</math> is finite: <math>\nu=\dim\mathfrak{L}_\lambda(A)<\infty</math>, where <math>\mathfrak{L}_\lambda(A)</math> is the [[
# The space <math>\mathfrak{B}</math> could be decomposed into a direct sum <math>\mathfrak{B}=\mathfrak{L}_\lambda(A)\oplus \mathfrak{N}_\lambda</math>, where <math>\mathfrak{N}_\lambda</math> is an [[invariant subspace]] of <math>A</math> in which <math>A-\lambda I_{\mathfrak{B}}</math> has a bounded inverse.
Line 20:
|title=Основные положения о дефектных числах, корневых числах и индексах линейных операторов
|trans-title=Fundamental aspects of defect numbers, root numbers and indexes of linear operators
|journal=
|volume=12
|issue=2(74)
Line 50:
Let <math>A:\,\mathfrak{B}\to\mathfrak{B}</math> be a closed linear [[densely defined operator]] in the Banach space <math>\mathfrak{B}</math>. The following statements are equivalent:
# <math>\lambda\in\sigma(A)</math> is a normal eigenvalue;
# <math>\lambda\in\sigma(A)</math> is an isolated point in <math>\sigma(A)</math> and <math>A-\lambda I_{\mathfrak{B}}</math> is [[
# <math>\lambda\in\sigma(A)</math> is an isolated point in <math>\sigma(A)</math> and <math>A-\lambda I_{\mathfrak{B}}</math> is [[Fredholm operator|Fredholm]];
# <math>\lambda\in\sigma(A)</math> is an isolated point in <math>\sigma(A)</math> and <math>A-\lambda I_{\mathfrak{B}}</math> is [[Fredholm operator|Fredholm]] of index zero;
|