Content deleted Content added
Line 289:
It is based on [[Lagrange polynomial|Lagrange interpolation]] and techniques of [[generating function]]s.
Consider <math>S(x)\Lambda(x),</math> and for the sake of simplicity suppose <math>\lambda_k = 0</math> for <math>k > v,</math> and <math>s_k = 0</math> for <math>k > c + d - 2.</math> Then
:<math>S(x)\Lambda(x) = \sum_{j=0}^{\infty}\sum_{i=0}^j s_{j-i+1}\lambda_i x^j.</math>
:<math>\begin{align}
Line 307:
Thanks to <math>v\leqslant d-1</math> we have
:<math>\Omega(x) = -\lambda_0\sum_{j=1}^v e_j\alpha^{c i_j} \prod_{\ell\in\{1,\cdots,v\}\setminus\{j\}} \left
Thanks to <math>\Lambda</math> (the Lagrange interpolation trick) the sum degenerates to only one summand for <math>x = \alpha^{-i_k}</math>
:<math>\Omega \left
To get <math>e_k</math> we just should get rid of the product. We could compute the product directly from already computed roots <math>\alpha^{-i_j}</math> of <math>\Lambda,</math> but we could use simpler form.
As [[formal derivative]]
:<math>\Lambda'(x) = \lambda_0\sum_{j=1}^v \alpha^{i_j}\prod_{\ell\in\{1,\cdots,v\}\setminus\{j\}} \left
we get again only one summand in
:<math>\Lambda'\left(\alpha^{-i_k}\right) = \lambda_0\alpha^{i_k}\prod_{\ell\in\{1,\cdots,v\}\setminus\{k\}} \left
So finally
:<math>e_k = -\frac{\alpha^{i_k}\Omega \left
This formula is advantageous when one computes the formal derivative of <math>\Lambda</math> form
:<math>\Lambda(x) = \sum_{i=1}^v \
yielding:
|