Content deleted Content added
Line 132:
For '''Binary''' codes, if both <math>k</math> and <math>n-k</math> are not too big, and assuming the code generating matrix is in standard form, syndrome decoding can be computed using 2 precomputed lookup tables and 2 XORs only. <ref>[[Jack Keil Wolf ]] (2008) ''An Introduction to Error Correcting Codes'', Course: Communication Systems III, [[UCSD]], http://circuit.ucsd.edu/~yhk/ece154c-spr17/pdfs/ErrorCorrectionI.pdf</ref>
Let <math>z</math> be the received
The syndrome is then computed as the last <math>n-k</math> bits of <math>s=z\oplus z'</math> (the first <math>k</math> bits of the XOR are zero [since the generating matrix is in standard form] and discarded). Using the syndrome, the error <math>e</math> is computed using the syndrome lookup table of size <math>2^{n-k}</math>, and the decoding is then computed via <math>x = z \oplus e</math> (for the
The number of entries in the two lookup tables is <math>2^k+2^{n-k}</math>, which is significantly smaller than <math>2^n</math> required for [[standard array|standard array decoding]] that requires only <math>1</math> lookup. Additionally, the precomputed encoding lookup table can be used for the encoding, and is thus often useful to have.
|