Content deleted Content added
Wiki507317 (talk | contribs) mNo edit summary |
Wiki507317 (talk | contribs) |
||
Line 25:
#'''Statistical techniques.''' These are usually based on [[time series]] processing of measurement data, including [[Surface weather observation|meteorological observations]] and power output measurements from a solar power facility. What then follows is the creation of a [[Training, validation, and test sets|training dataset]] to tune the parameters of a model (I. Espino eta al, 2011), before evaluation of model performance against a separate testing dataset. This class of techniques includes the use of any kind of statistical approach, such as [[Autoregressive–moving-average model|autoregressive moving averages]] (ARMA, ARIMA, etc.), as well as machine learning techniques such as [[Artificial neural network|neural networks]], [[support vector machine]]s (etc.). These approaches are usually benchmarked to a persistence approach in order to evaluate their improvements. This persistence approach just assumes that any variable at time step t is the value it took in a previous time.
#[[File:Satellite Based Solar Nowcasting.gif|thumb|An example of satellite-based cloud cover nowcasting, which is used to generate predication of solar power outputs. Credit: [http://solcastglobal.com Solcast]]]'''Satellite based methods.''' These methods leverage the several [[Geostationary orbit|geostationary]] Earth observing [[weather satellite]]s (such as [[Meteosat|Meteosat Second Generation (MSG) fleet]]'')'' to detect, characterise, track and predict the future locations of cloud cover. These satellites make it possible to generate solar power forecasts over broad regions through the application of image processing and forecasting algorithms. Key forecasting algorithms include cloud motion vectors (CMVs).<ref>{{Cite web|url= http://glossary.ametsoc.org/wiki/Cloud_motion_vector |title=Cloud motion vector - AMS Glossary|website=glossary.ametsoc.org |access-date=2019-05-08}}</ref> Relevant methods for applying physical models based on satellite image processing techniques provide an estimation of future atmospheric values can be found in ''Alvarez et al.'', 2010.
#[[File:Steadysun_All_Sky_Imager_Solar_Power_Forecasting_Solution.png|thumb|An example of sky-imager used for cloud image acquisition to simulate solar power forecasting. <br />Credit: [https://www.steady-sun.com/ Steadysun]]]'''Ground based techniques.''' These techniques are generally used to derive irradiance forecasts with much higher spatial and temporal resolution compared with the satellite-based forecasts. Local cloud information is acquired by one or several ground-based sky imagers at a high frequency (1 minute or less). The combination of these images and local weather measurement information are processed to simulate cloud motion vectors and optical depth to obtain forecasts up to 30 minutes ahead.
==Short-term solar power forecasting==
|