Content deleted Content added
m →External links: Task 16: replaced (1×) / removed (0×) deprecated |dead-url= and |deadurl= with |url-status=; |
HerrHartmuth (talk | contribs) →Properties: added section on similarity transformation |
||
Line 86:
As a side note, an '''unreduced''' symmetric tridiagonal matrix is a matrix containing non-zero off-diagonal elements of the tridiagonal, where the eigenvalues are distinct while the eigenvectors are unique up to a scale factor and are mutually orthogonal.<ref>{{cite book |last1=Dhillon |first1=Inderjit Singh |title=A New O(n 2 ) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem |page=8 |url=http://www.cs.utexas.edu/~inderjit/public_papers/thesis.pdf}}</ref>
=== Similarity to symmetric tridiagonal matrix ===
Given a given real tridiagonal, ''unsymmetic'' matrix
:<math>
T = \begin{pmatrix}
a_1 & b_1 \\
c_1 & a_2 & b_2 \\
& c_2 & \ddots & \ddots \\
& & \ddots & \ddots & b_{n-1} \\
& & & c_{n-1} & a_n
\end{pmatrix}
</math>
where <math>b_i \neq c_i </math>.
Assume that the product of off-diagonal entries is ''strictly'' positive <math>b_i c_i > 0 </math> and define a transformation matrix <math>D</math> by
:<math>
D := \operatorname{diag}(\delta_1 , \dots, \delta_n)
\quad \text{for} \quad
\delta_i :=
\begin{cases}
1 & , \, i=1
\\
\sqrt{\frac{c_{i-1} \dots c_1}{b_{i-1} \dots b_1}} & , \, i=2,\dots,n \,.
\end{cases}
</math>
The [[Matrix_similarity|similarity transformation]] <math>J:=D^{-1} T D </math> yields a ''symmetric''<ref>{{Cite web|url=http://www.math.hkbu.edu.hk/ICM/LecturesAndSeminars/08OctMaterials/1/Slide3.pdf|title=www.math.hkbu.edu.hk math lecture|last=|first=|date=|website=|url-status=live|archive-url=|archive-date=|access-date=}}</ref> tridiagonal matrix <math>J</math> by
:<math>
J:=D^{-1} T D
= \begin{pmatrix}
a_1 & \sqrt{b_1 c_1} \\
\sqrt{b_1 c_1} & a_2 & \sqrt{b_2 c_2} \\
& c_2 & \ddots & \ddots \\
& & \ddots & \ddots & \sqrt{b_{n-1} c_{n-1}} \\
& & & \sqrt{b_{n-1} c_{n-1}} & a_n
\end{pmatrix} \,.
</math>
Note that <math>T</math> and <math>J</math> have the same eigenvalues.
==Computer programming==
|