Framebuffer: Difference between revisions

Content deleted Content added
Line 13:
A color scanned display was implemented in the late 1960s, called the [[Brookhaven National Laboratory|Brookhaven]] RAster Display (BRAD), which used a [[drum memory]] and a television monitor.<ref>{{citation |author1=D. Ophir |author2=S. Rankowitz |author3=B. J. Shepherd |author4=R. J. Spinrad |title=BRAD: The Brookhave Raster Display |work=Communications of the ACM |volume=11 |number=6 |date=June 1968 |pages=415–416 |doi=10.1145/363347.363385}}</ref> In 1969, A. Michael Noll of [[Bell Labs]] implemented a scanned display with a frame buffer, using [[magnetic-core memory]].<ref>{{cite journal |last=Noll |first=A. Michael |title=Scanned-Display Computer Graphics |work=Communications of the ACM |volume=14 |number=3 |date=March 1971 |pages=145–150 |doi=10.1145/362566.362567}}</ref> Later on, the Bell Labs system was expanded to display an image with a color depth of three bits on a standard color TV monitor.
 
In the early 1970s, the development of [[MOS memory]] ([[metal-oxide-semiconductor]] memory) [[Integrated circuit|integrated-circuit]] chips, capable ofparticularly [[large-scale integration|high-density]] [[DRAM]] (dynamic [[random-access memory]]) chips exceeding 1{{nbsp}}[[kibibit|kb]] memory, made it practical to create, for the first time, a [[digital memory]] system with framebuffers capable of holding a standard video image.<ref name="Shoup_SuperPaint"/><ref>{{cite conference |last1=Goldwasser |first1=S.M. |title=Computer Architecture For Interactive Display Of Segmented Imagery |conference=Computer Architectures for Spatially Distributed Data |date=June 1983 |publisher=[[Springer Science & Business Media]] |isbn=9783642821509 |pages=75-94 (81) |url=https://books.google.com/books?id=8MuoCAAAQBAJ&pg=PA81}}</ref> High-density integrated-circuit memoryThis led to the development of the [[SuperPaint]] system by [[Richard Shoup (programmer)|Richard Shoup]] at [[Xerox PARC]] in 1972.<ref name="Shoup_SuperPaint">{{cite web |url=http://accad.osu.edu/~waynec/history/PDFs/Annals_final.pdf |archive-url=https://web.archive.org/web/20040612215245/http://accad.osu.edu/~waynec/history/PDFs/Annals_final.pdf |archive-date=2004-06-12 |title=SuperPaint: An Early Frame Buffer Graphics System |author=Richard Shoup |publisher=IEEE |work=Annals of the History of Computing |year=2001 |format=PDF |url-status=dead }}</ref> Shoup was also able to use the SuperPaint framebuffer to create an early digital video-capture system. By synchronizing the output signal to the input signal, Shoup was able to overwrite each pixel of data as it shifted in. Shoup also experimented with modifying the output signal using color tables. These color tables allowed the SuperPaint system to produce a wide variety of colors outside the range of the limited 8-bit data it contained. This scheme would later become commonplace in computer framebuffers.
 
In 1974, [[Evans & Sutherland]] released the first commercial framebuffer, the Picture System,<ref>{{citation |title=Picture System |url=http://s3data.computerhistory.org/brochures/evanssutherland.3d.1974.102646288.pdf |publisher=Evans & Sutherland |access-date=2017-12-31}}</ref> costing about $15,000. It was capable of producing resolutions of up to 512 by 512 pixels in 8-bit [[grayscale]], and became a boon for graphics researchers who did not have the resources to build their own framebuffer. The [[New York Institute of Technology]] would later create the first 24-bit color system using three of the Evans & Sutherland framebuffers.<ref name="NYIT-History">{{cite web |url=https://www.cs.cmu.edu/~ph/nyit/masson/nyit.html |title=History of the New York Institute of Technology Graphics Lab |accessdate=2007-08-31}}</ref> Each framebuffer was connected to an [[RGB color model|RGB]] color output (one for red, one for green and one for blue), with a Digital Equipment Corporation PDP 11/04 [[minicomputer]] controlling the three devices as one.