Circular segment: Difference between revisions

Content deleted Content added
No edit summary
m +zh-classical:, cleanup
Line 5:
 
Let '''R''' be the [[radius]] of the [[circle]], '''c''' the chord [[length]], '''s''' the arc length, '''h''' the [[height]] of the segment, and '''d''' the height of the [[triangle|triangular]] portion. The [[area]] of the circular segment is equal to the area of the [[circular sector]] minus the area of the triangular portion.
 
 
 
The radius is&nbsp;<math>R = h + d \frac{}{}</math>
 
 
 
 
The arc length is&nbsp;<math>s = R \theta \frac{}{}</math>, where <math> \theta \frac{}{}</math> is in [[radians]].
 
 
 
The area is&nbsp;<math>A = \frac{R^2}{2}\left(\theta-\sin\theta\right)</math>
 
 
<br clear=all />
Line 38 ⟶ 30:
 
<math>R\sin\frac{\theta}{2}R\cos\frac{\theta}{2} = \frac{R^2}{2}\sin\theta</math>
 
 
The area is therefore:
Line 61 ⟶ 52:
[[de:Kreissegment]]
[[zh:弓形]]
[[zh-classical:弓形]]