Proximal gradient methods for learning: Difference between revisions

Content deleted Content added
Add: year, class, title, eprint, author pars. 1-4. Removed parameters. Some additions/deletions were actually parameter name changes.| You can use this tool yourself. Report bugs here. | via #UCB_Gadget
Other group structures: | Add: year, class, title, eprint, author pars. 1-3. Removed parameters. Some additions/deletions were actually parameter name changes.| You can use this tool yourself. Report bugs here. | via #UCB_Gadget
Line 122:
=== Other group structures ===
 
In contrast to the group lasso problem, where features are grouped into disjoint blocks, it may be the case that grouped features are overlapping or have a nested structure. Such generalizations of group lasso have been considered in a variety of contexts.<ref>{{cite journal|last=Chen|first=X.|author2=Lin, Q. |author3=Kim, S. |author4=Carbonell, J.G. |author5=Xing, E.P. |title=Smoothing proximal gradient method for general structured sparse regression|journal=Ann. Appl. Stat.|year=2012|volume=6|issue=2|pages=719–752|doi=10.1214/11-AOAS514|arxiv=1005.4717}}</ref><ref>{{cite journal|last=Mosci|first=S.|author2=Villa, S. |author3=Verri, A. |author4=Rosasco, L. |title=A primal-dual algorithm for group sparse regularization with overlapping groups|journal=NIPS|year=2010|volume=23|pages=2604–2612}}</ref><ref name=nest>{{cite journal|last=Jenatton|first=R. |author2=Audibert, J.-Y. |author3=Bach, F. |title=Structured variable selection with sparsity-inducing norms|journal=J. Mach. Learn. Res.|year=2011|volume=12|pages=2777–2824|bibcode=2009arXiv0904.3523J |arxiv=0904.3523 }}</ref><ref>{{cite journal|last=Zhao|first=P.|author2=Rocha, G. |author3=Yu, B. |title=The composite absolute penalties family for grouped and hierarchical variable selection|journal=Ann. Stat.|year=2009|volume=37|issue=6A|pages=3468–3497|doi=10.1214/07-AOS584|arxiv=0909.0411|bibcode=2009arXiv0909.0411Z}}</ref> For overlapping groups one common approach is known as ''latent group lasso'' which introduces latent variables to account for overlap.<ref>{{cite journalarxiv |lasteprint=Obozinski|first=G1110.0413 |author2last1=Laurent, J.Obozinski |author3first1=Vert, J.-P.Guillaume |title=Group lassoLasso with overlapsOverlaps: theThe latentLatent groupGroup lassoLasso approach |journallast2=INRIAJacob Technical|first2=Laurent Report|yearlast3=2011Vert |urlfirst3=http://hal.inria.fr/inriaJean-00628498/en/Philippe |bibcodeclass=2011arXiv1110stat.0413OML |arxivyear=1110.04132011 }}</ref><ref>{{cite arxiv |eprint=1209.0368|last1=Villa|first1=Silvia|title=Proximal methods for the latent group lasso penalty|last2=Rosasco|first2=Lorenzo|last3=Mosci|first3=Sofia|last4=Verri|first4=Alessandro|class=math.OC|year=2012}}</ref> Nested group structures are studied in ''hierarchical structure prediction'' and with [[directed acyclic graph]]s.<ref name=nest />
 
== See also ==
* [[Convex analysis]]