Basel problem: Difference between revisions

Content deleted Content added
m The sum one calculates starts from 1, not 0
m The sum of odd numbers starts from 0
Line 320:
Let's separate even and odd numbers :
 
<math>\displaystyle \sum ^{+\infty }_{n=1}\frac{1}{n^{2}} =\sum ^{+\infty }_{n=1}\frac{1}{( 2n)^{2}} \ +\sum ^{+\infty }_{n=10}\frac{1}{( 2n+1)^{2}} \
=\frac{1}{4}\sum ^{+\infty }_{n=1}\frac{1}{n^{2}} +\displaystyle \ \frac{\pi ^{2}}{8}
</math>