Content deleted Content added
Reciprocist (talk | contribs) |
Reciprocist (talk | contribs) |
||
Line 26:
\psi^{(n)}(x)&=\psi(n,x) \qquad n\in\mathbb{N} \\
\Gamma(x)&=\exp\left( \psi(-1,x)+\tfrac12 \ln 2\pi \right)\\
\zeta(z,q)&=\frac{\Gamma (1-z)}{\ln 2} \left(2^{-z} \psi \left(z-1,\frac{q+1}{2}\right)+2^{-z} \psi \left(z-1,\frac{q}{2}\right)-\psi(z-1,q)\right)\\
\zeta'(-1,x)&=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12} \\
B_n(q) &= -\frac{\Gamma (n+1)}{\ln 2} \left(2^{n-1} \psi\left(-n,\frac{q+1}{2}\right)+2^{n-1} \psi\left(-n,\frac{q}{2}\right)-\psi(-n,q)\right)
|