Content deleted Content added
No edit summary |
No edit summary |
||
Line 27:
in this context, the stretched exponential or its Fourier transform are also called the '''Kohlrausch–Williams–Watts (KWW) function'''.
In phenomenological applications, it is often not clear whether the stretched exponential function should
In each case one gets the same asymptotic decay, but a different power law prefactor, which makes
|author1=Donsker, M. D. |author2=Varadhan, S. R. S.
|lastauthoramp=yes | journal = Comm. Pure Appl. Math.
Line 66:
=== Moments ===
Following the usual physical interpretation, we interpret the function argument ''t'' as
:<math>\langle\tau\rangle \equiv \int_0^\infty dt\, e^{-(t/\tau_K)^\beta} = {\tau_K \over \beta } \Gamma \left({1 \over \beta }\right)</math>
Line 73:
where Γ is the [[gamma function]]. For exponential decay, 〈''τ''〉 = ''τ''<sub>''K''</sub> is recovered.
The higher [[moment (mathematics)|moments]] of the stretched exponential function are
<ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=http://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik |chapter=3.478. |page=372}}</ref>
|