Sequence clustering: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
m Alter: doi, pmc, doi-broken-date. | You can use this bot yourself. Report bugs here.| Activated by User:Grimes2 | Category:CS1 errors: DOI | via #UCB_Category
consistent citation formatting
Line 10:
* CD-HIT<ref name=cdhit/>
* [[UCLUST]] in USEARCH<ref name=usearch/>
* Starcode:<ref>{{cite web|url=https://github.com/gui11aume/starcode|title=Starcode repository|date=2018-10-11}}</ref> a fast sequence clustering algorithm based on exact all-pairs search.<ref name="pmid25638815">{{cite journal | vauthors = Zorita E, Cuscó P, Filion GJ | title = Starcode: sequence clustering based on all-pairs search | journal = Bioinformatics (Oxford, England) | volume = 31 | issue = 12 | pages = 1913–9 | date = June 2015 | pmid = 25638815 | pmc = 4765884 | doi = 10.1093/bioinformatics/btv053 }}</ref>
* OrthoFinder:<ref>{{cite web|url=http://www.stevekellylab.com/software/orthofinder|title=OrthoFinder|work=Steve Kelly Lab}}</ref> a fast, scalable and accurate method for clustering proteins into gene families (orthogroups)<ref name="pmid26243257">{{cite journal | vauthors = Emms DM, Kelly S | title = OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy | journal = Genome Biology | volume = 16 | issue = | pages = 157 | date = August 2015 | pmid = 26243257 | pmc = 4531804 | doi = 10.1186/s13059-015-0721-2 }}</ref><ref name="pmid31727128">{{cite journal | vauthors = Emms DM, Kelly S | title = OrthoFinder: phylogenetic orthology inference for comparative genomics | journal = Genome Biology | volume = 20 | issue = 1 | pages = 238 | date = November 2019 | pmid = 31727128 | pmc = 6857279 | doi = 10.1186/s13059-019-1832-y }}</ref>
|title=Starcode: sequence clustering based on all-pairs search
* Linclust:<ref name="pmid29959318">{{cite journal | vauthors = Steinegger M, Söding J | title = Clustering huge protein sequence sets in linear time | journal = Nature Communications | volume = 9 | issue = 1 | pages = 2542 | date = June 2018 | pmid = 29959318 | pmc = 6026198 | doi = 10.1038/s41467-018-04964-5 }}</ref> first algorithm whose runtime scales linearly with input set size, very fast, part of [http://mmseqs.org/ MMseqs2]<ref name="pmid29035372">{{cite journal | vauthors = Steinegger M, Söding J | title = MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets | journal = Nature Biotechnology | volume = 35 | issue = 11 | pages = 1026–1028 | date = November 2017 | pmid = 29035372 | doi = 10.1038/nbt.3988 }}</ref> software suite for fast, sensitive sequence searching and clustering of large sequence sets
|author1=Zorita E |author2=Cuscó P |author3=Filion GJ. |journal=Bioinformatics
* TribeMCL: a method for clustering proteins into related groups<ref name="pmid11917018">{{cite journal | vauthors = Enright AJ, Van Dongen S, Ouzounis CA | title = An efficient algorithm for large-scale detection of protein families | journal = Nucleic Acids Research | volume = 30 | issue = 7 | pages = 1575–84 | date = April 2002 | pmid = 11917018 | pmc = 101833 | doi = 10.1093/nar/30.7.1575 }}</ref>
|date=Jun 2015 |volume=31
|issue=12 |pages=1913–1919
|doi=10.1093/bioinformatics/btv053
|pmid=25638815 |pmc=4765884}}</ref>
* OrthoFinder:<ref>{{cite web|url=http://www.stevekellylab.com/software/orthofinder|title=OrthoFinder|work=Steve Kelly Lab}}</ref> a fast, scalable and accurate method for clustering proteins into gene families (orthogroups)<ref>{{cite journal
|title=OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy.
|author1=Emms DM |author2=Kelly S. |journal=Genome Biology
| date=Aug 2015 |volume=16
|issue=157
|pages=157 |pmid=26243257
|doi=10.1186/s13059-015-0721-2 |pmc=4531804}}</ref><ref>{{cite journal
|title=OrthoFinder: phylogenetic orthology inference for comparative genomics
|author1=Emms DM |author2=Kelly S. |journal=Genome Biology
| date=Aug 2019 |volume=20
|issue=238
|pages=238 |pmid=31727128
|doi=10.1186/s13059-019-1832-y |pmc=6857279}}</ref>
* Linclust:<ref>{{cite journal
|title=Clustering huge protein sequence sets in linear time
|author1=Steinegger M. |author2=Söding J. |journal=Nature Communications
|date=June 2018 |volume=9
|issue=1 |pages=2542
|doi=10.1038/s41467-018-04964-5
|pmid= 29959318|pmc=6026198 |bibcode=2018NatCo...9.2542S }}</ref> first algorithm whose runtime scales linearly with input set size, very fast, part of [http://mmseqs.org/ MMseqs2] <ref>{{cite journal
|title=MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
|author1=Steinegger M. |author2=Söding J. |journal=Nature Biotechnology
|date=Oct 16, 2017 |volume=35
|issue= 11|pages=1026–1028
|doi=10.1038/nbt.3988
|pmid= 29035372|hdl=11858/00-001M-0000-002E-1967-3 }}</ref> software suite for fast, sensitive sequence searching and clustering of large sequence sets
* TribeMCL: a method for clustering proteins into related groups<ref>{{cite journal
|title=An efficient algorithm for large-scale detection of protein families.
|author1=Enright AJ |author2=Van Dongen S |author3=Ouzounis CA. |journal=Nucleic Acids Res.
| date=Apr 2002 |volume=30
|issue=7
|pages=1575–84
|pmid=11917018
|doi=10.1093/nar/30.7.1575 |pmc=101833}}</ref>
* BAG: a graph theoretic sequence clustering algorithm<ref>{{cite web |url=http://bio.informatics.indiana.edu/sunkim/BAG/ |title=Archived copy |accessdate=2004-02-19 |url-status=dead |archiveurl=https://web.archive.org/web/20031206172749/http://bio.informatics.indiana.edu/sunkim/BAG/ |archivedate=2003-12-06 }}</ref>
* JESAM:<ref>{{cite web|url=http://www.littlest.co.uk/software/bioinf/old_packages/jesam/jesam_paper.html|title=Bioinformatics Paper: JESAM: CORBA software components for EST alignments and clusters|work=littlest.co.uk}}</ref> Open source parallel scalable DNA alignment engine with optional clustering software component
Line 61 ⟶ 24:
* ICAtools<ref>{{cite web|url=http://www.littlest.co.uk/software/bioinf/old_packages/icatools/|title=Introduction to the ICAtools|work=littlest.co.uk}}</ref> - original (ancient) DNA clustering package with many algorithms useful for artifact discovery or EST clustering
* Skipredudant EMBOSS tool<ref>{{cite web|url=http://bioweb2.pasteur.fr/docs/EMBOSS/skipredundant.html|title=EMBOSS: skipredundant|work=pasteur.fr}}</ref> to remove redundant sequences from a set
* CLUSS Algorithm<ref name="pmid17683581">{{cite journal |title vauthors =CLUSS AlgorithmKelil A, Wang S, Brzezinski R, Fleury A | title = CLUSS: Clusteringclustering non-alignableof protein sequences based on a new similarity measure | journal =Prospectus.usherbrooke.ca BMC Bioinformatics | volume = 8 |pages issue =286 |doi pages =10.1186/1471-2105-8- 286 |pmid=17683581|pmc=1976428|year date = August 2007 |last1 pmid = Kelil17683581 |first1 pmc = Abdellali1976428 |last2=Wang|first2 doi =Shengrui|last3=Brzezinski|first3=Ryszard|last4=Fleury|first4=Alain 10.1186/1471-2105-8-286 }}</ref> to identify groups of structurally, functionally, or evolutionarily related hard-to-align protein sequences. CLUSS webserver <ref name="prospectus.usherbrooke.ca">{{Cite web | url=http://prospectus.usherbrooke.ca/CLUSS/ | title=CLUSS Home Page}}</ref>
* CLUSS2 Algorithm<ref name="pmid20058485">{{cite journal |url vauthors =https://www.inderscienceonline.com/doi/abs/10.1504/IJCBDD.2008.02019 Kelil A, Wang S, Brzezinski R | title =CLUSS2 CLUSS2: Alignmentan alignment-independent algorithm for clustering protein families with multiple biological functions |issue=2|pages=122–140| journal = International Journal of Computational Biology and Drug Design | volume = 1 |doi issue =10.1504/IJCBDD.2008.02019 2 | pages = 122–40 | date =January 2008 |last1 pmid =Kelil|first1=Abdellali|last2=Wang|first2=Shengrui|last3=Brzezinski|first3=Ryszard 20058485 | doi-broken-date =2019-12-19 10.1504/ijcbdd.2008.020190 }}</ref> for clustering families of hard-to-align protein sequences with multiple biological functions. CLUSS2 webserver <ref name="prospectus.usherbrooke.ca"/>
<!-- Lets try the above (although both are wobbly) -->
<!-- * [http://bio.cc/RSDB RSDB] broken link -->
Line 68 ⟶ 31:
== Non-redundant sequence databases ==
* PISCES: A Protein Sequence Culling Server<ref>{{cite web|url=http://dunbrack.fccc.edu/pisces/|title=Dunbrack Lab|work=fccc.edu}}</ref>
* RDB90<ref name=rdb90>{{cite journal | vauthors = Holm L, Sander C | title = Removing near-neighbour redundancy from large protein sequence collections | journal = Bioinformatics (Oxford, England) | volume = 14 | issue = 5 | pages = 423–9 | date = June 1998 | pmid = 9682055 | doi = 10.1093/bioinformatics/14.5.423 }}</ref>
* RDB90<ref name=rdb90>{{cite journal|pmid=9682055
|journal=Bioinformatics
| date=Jun 1998 |volume=14
|issue=5
|pages=423–9
|title=Removing near-neighbour redundancy from large protein sequence collections.
|author=Holm L1, Sander C.
|doi=10.1093/bioinformatics/14.5.423
}}</ref>
* UniRef: A non-redundant [[UniProt]] sequence database<ref>{{cite web|url=https://www.uniprot.org/database/DBDescription.shtml#uniref|title=About UniProt|work=uniprot.org}}</ref>
* Uniclust: A clustered UniProtKB sequences at the level of 90%, 50% and 30% pairwise sequence identity.<ref name="pmid27899574">{{cite journal | vauthors = Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger M | title = Uniclust databases of clustered and deeply annotated protein sequences and alignments | journal = Nucleic Acids Research | volume = 45 | issue = D1 | pages = D170–D176 | date = January 2017 | pmid = 27899574 | pmc = 5614098 | doi = 10.1093/nar/gkw1081 }}</ref>
|title=Uniclust databases of clustered and deeply annotated protein sequences and alignments
|author1=Mirdita M |author2=von den Drisch L. |author3=Galiez C. |author4=Soeding J. |author5= Steinegger M. |journal=Nucleic Acids Res.
|date= Nov 2016 |volume=45
|issue=D1 |pages= D170–D176
|doi= 10.1093/nar/gkw1081|pmid=27899574 |pmc=5614098 }}</ref>
* Virus Orthologous Clusters:<ref>{{cite web|url=http://athena.bioc.uvic.ca/tools/VOCS|title=VOCS - Viral Bioinformatics Resource Center|work=uvic.ca}}</ref> A viral protein sequence clustering database; contains all predicted genes from eleven virus families organized into ortholog groups by BLASTP similarity