Anger function: Difference between revisions

Content deleted Content added
unclear, unsourced
No edit summary
Line 23:
 
so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions '''J'''<sub>ν</sub> are the same as Bessel functions ''J''<sub>ν</sub>, and Weber functions can be expressed as finite linear combinations of [[Struve function]]s.
 
==Power series expansion==
*The '''Anger function''' has the power series expansion<ref name=DLMF>{{dlmf|id=11.10|title=Anger-Weber Functions|first=R. B. |last=Paris}}</ref>
:<math>\mathbf{J}_\nu(z)=\sum{k=0}^\infty\frac{\cos\frac{\pi\nu}{2}(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}+\sum{k=0}^\infty\frac{\sin\frac{\pi\nu}{2}(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)}</math>
 
While the '''Weber function''' has the power series expansion<ref name=DLMF/>
:<math>\mathbf{E}_\nu(z)=\sum{k=0}^\infty\frac{\sin\frac{\pi\nu}{2}(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}-\sum{k=0}^\infty\frac{\cos\frac{\pi\nu}{2}(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)}</math>
 
==Differential equations==
Line 40 ⟶ 47:
*{{AS ref|12|498}}
*C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig, 5 (1855) pp.&nbsp;1–29
*{{dlmf|id=11.10|title=Anger-Weber Functions|first=R. B. |last=Paris}}
*{{springer|id=A/a012490|title=Anger function|first=A.P.|last= Prudnikov|authorlink=Anatolii Platonovich Prudnikov}}
*{{springer|id=W/w097320|title=Weber function|first=A.P.|last= Prudnikov}}
*[[G.N. Watson]], "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952)
*H.F. Weber, Zurich Vierteljahresschrift, 24 (1879) pp.&nbsp;33–76
{{Reflist}}
 
[[Category:Special functions]]