Content deleted Content added
inserted notelist template; citation touchups |
moved comment into footnote |
||
Line 1:
In the mathematical field of [[complex analysis]], a '''meromorphic function''' on an [[open set|open subset]] ''D'' of the [[complex plane]] is a [[function (mathematics)|function]] that is [[holomorphic function|holomorphic]] on all of ''D'' ''except'' for a set of [[isolated point]]s, which are [[pole (complex analysis)|pole]]s of the function. This terminology comes from the [[Ancient Greek]] ''meros'' ([[wikt:μέρος|μέρος]]), meaning "part".{{efn|Greek ''meros'' ([[wikt:μέρος|μέρος]]),
Every meromorphic function on ''D'' can be expressed as the ratio between two [[holomorphic function]]s (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator.
Line 60:
{{reflist|25em}}
==Sources==
* {{cite book |last=Lang |first=Serge |author-link=Serge Lang |year=1999 |title=Complex analysis |publisher=[[Springer-Verlag]] |___location=Berlin; New York |edition=4th |isbn=978-0-387-98592-3}}
* {{cite book |last=Zassenhaus |first=Hans |author-link=Hans Zassenhaus |year=1937 |title=Lehrbuch der Gruppentheorie |publisher=B. G. Teubner Verlag |___location=Leipzig; Berlin |edition=1st}}
|