Expected linear time MST algorithm: Difference between revisions

Content deleted Content added
Bender the Bot (talk | contribs)
m Further reading: HTTP → HTTPS for Technion CS, replaced: http://www.cs.technion.ac.il/ → https://www.cs.technion.ac.il/
Performance: MOS:HEAD
Line 65:
The expected performance is a result of the random sampling step. The effectiveness of the random sampling step is described by the following lemma which places a bound on the number of '''[[#F-heavy and F-light Edges|F-light]]''' edges in ''G'' thereby restricting the size of the second subproblem.
 
===Random Samplingsampling Lemmalemma===
'''Lemma'''- Let ''H'' be a subgraph of ''G'' formed by including each edge of ''G'' independently with probability ''p'' and let ''F'' be the minimum spanning forest of ''H''. The [[Expected value|expected number]] of '''[[#F-heavy and F-light Edges|F-light]]''' edges in ''G'' is at most ''n/p'' where ''n'' is the number of vertices in ''G''
 
Line 72:
The maximum number of [[#F-heavy and F-light Edges|F-light]] edges added to ''H'' is ''n''-1 since any minimum spanning tree of ''H'' has ''n''-1 edges. Once ''n''-1 F-light edges have been added to ''H'' none of the subsequent edges considered are F-light by the [[Minimum_spanning_tree#Cycle_property|cycle property]]. Thus, the number of F-light edges in ''G'' is bounded by the number of F-light edges considered for ''H'' before ''n''-1 F-light edges are actually added to ''H''. Since any F-light edge is added with probability ''p'' this is equivalent to flipping a coin with probability ''p'' of coming up heads until ''n''-1 heads have appeared. The total number of coin flips is equal to the number of F-light edges in ''G''. The distribution of the number of coin flips is given by the [[negative binomial distribution|inverse binomial distribution]] with parameters ''n''-1 and ''p''. For these parameters the expected value of this distribution is (''n''-1)/''p''.
 
===Expected Analysisanalysis===
Ignoring work done in recursive subproblems the total amount of work done in a single invocation of the algorithm is [[linear time|linear]] in the number of edges in the input graph. Step 1 takes constant time. Borůvka steps can be executed in time linear in the number of edges as mentioned in the [[#Borůvka step|Borůvka step]] section. Step 3 iterates through the edges and flips a single coin for each one so it is linear in the number of edges. Step 4 can be executed in linear time using a modified linear time minimum spanning tree verification algorithm.<ref name=MST-V1/><ref name=MST-V2/> Since the work done in one iteration of the algorithm is linear in the number of edges the work done in one complete run of the algorithm (including all recursive calls) is bounded by a constant factor times the total number of edges in the original problem and all recursive subproblems.