Content deleted Content added
m Last element in top row of matrix was incorrect. It should be -60 (instead of -20). The pivot row (3rd row) is multiplied by 4 and subtracted from the first row (after multiplying the first row by 3). Note that this edit is consistent with the final solution for Z in the equation below. |
Citation bot (talk | contribs) m Alter: doi-broken-date. Add: url. Removed URL that duplicated unique identifier. | You can use this bot yourself. Report bugs here. | Activated by User:Ost316 | Category:Pages with DOIs inactive as of 2019 August | via #UCB_Category |
||
Line 4:
The name of the algorithm is derived from the concept of a [[simplex]] and was suggested by [[Theodore Motzkin|T. S. Motzkin]].<ref name="Murty22" >{{harvtxt|Murty|1983|loc=Comment 2.2}}</ref> Simplices are not actually used in the method, but one interpretation of it is that it operates on simplicial ''[[cone (geometry)|cone]]s'', and these become proper simplices with an additional constraint.<ref name="Murty39">{{harvtxt|Murty|1983|loc=Note 3.9}}</ref><ref name="StoneTovey">{{cite journal|last1=Stone|first1=Richard E.|last2=Tovey|first2=Craig A.|title=The simplex and projective scaling algorithms as iteratively reweighted least squares methods|journal=SIAM Review|volume=33|year=1991|issue=2|pages=220–237
|mr=1124362|jstor=2031142|doi=10.1137/1033049}}</ref><ref>{{cite journal|last1=Stone|first1=Richard E.|last2=Tovey|first2=Craig A.|title=Erratum: The simplex and projective scaling algorithms as iteratively reweighted least squares methods|journal=SIAM Review|volume=33|year=1991|issue=3|pages=461|mr=1124362|doi=10.1137/1033100|jstor=2031443|ref=harv
== Overview ==
Line 31:
George Dantzig worked on planning methods for the US Army Air Force during World War II using a desk calculator. During 1946 his colleague challenged him to mechanize the planning process to distract him from taking another job. Dantzig formulated the problem as linear inequalities inspired by the work of [[Wassily Leontief]], however, at that time he didn't include an objective as part of his formulation. Without an objective, a vast number of solutions can be feasible, and therefore to find the "best" feasible solution, military-specified "ground rules" must be used that describe how goals can be achieved as opposed to specifying a goal itself. Dantzig's core insight was to realize that most such ground rules can be translated into a linear objective function that needs to be maximized.<ref>{{Cite journal|url = http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA112060|title = Reminiscences about the origins of linear programming|date = April 1982|journal = Operations Research Letters|doi = 10.1016/0167-6377(82)90043-8|pmid = |access-date = |volume = 1|issue = 2 |pages=43–48|last1 = Dantzig|first1 = George B.}}</ref> Development of the simplex method was evolutionary and happened over a period of about a year.<ref>{{Cite journal|url = http://www.phpsimplex.com/en/Dantzig_interview.htm|title = An Interview with George B. Dantzig: The Father of Linear Programming|last = Albers and Reid|date = 1986|journal = College Mathematics Journal|doi = |pmid = |access-date = |pages = 292–314}}</ref>
After Dantzig included an objective function as part of his formulation during mid-1947, the problem was mathematically more tractable. Dantzig realized that one of the unsolved problems that [[George Dantzig#Mathematical statistics|he had mistaken]] as homework in his professor [[Jerzy Neyman]]'s class (and actually later solved), was applicable to finding an algorithm for linear programs. This problem involved finding the existence of [[Lagrange multipliers on Banach spaces|Lagrange multipliers]] for general linear programs over a continuum of variables, each bounded between zero and one, and satisfying linear constraints expressed in the form of [[Lebesgue integral]]s. Dantzig later published his "homework" as a thesis to earn his doctorate. The column geometry used in this thesis gave Dantzig insight that made him believe that the Simplex method would be very efficient.<ref>{{Cite book|url = http://www.dtic.mil/dtic/tr/fulltext/u2/a182708.pdf|title = Origins of the simplex method|last = Dantzig|first = George|date = May 1987|journal = A History of Scientific Computing|doi = 10.1145/87252.88081|pmid = |access-date = |isbn = 978-0-201-50814-7|doi-broken-date =
==Standard form==
Line 259:
If the values of all basic variables are strictly positive, then a pivot must result in an improvement in the objective value. When this is always the case no set of basic variables occurs twice and the simplex algorithm must terminate after a finite number of steps. Basic feasible solutions where at least one of the ''basic ''variables is zero are called ''degenerate'' and may result in pivots for which there is no improvement in the objective value. In this case there is no actual change in the solution but only a change in the set of basic variables. When several such pivots occur in succession, there is no improvement; in large industrial applications, degeneracy is common and such "''stalling''" is notable.
Worse than stalling is the possibility the same set of basic variables occurs twice, in which case, the deterministic pivoting rules of the simplex algorithm will produce an infinite loop, or "cycle". While degeneracy is the rule in practice and stalling is common, cycling is rare in practice. A discussion of an example of practical cycling occurs in [[Manfred W. Padberg|Padberg]].<ref name="Padberg"/> [[Bland's rule]] prevents cycling and thus guarantees that the simplex algorithm always terminates.<ref name="Padberg"/><ref name="Bland">
{{cite journal|title=New finite pivoting rules for the simplex method|first=Robert G.|last=Bland|journal=Mathematics of Operations Research|volume=2|issue=2|date=May 1977|pages=103–107|doi=10.1287/moor.2.2.103|jstor=3689647|mr=459599|ref=harv|url=https://semanticscholar.org/paper/874b988e359f63c8068226c53ef0a9bcd54e5e4d}}</ref><ref>{{harvtxt|Murty|1983|p=79}}</ref> Another pivoting algorithm, the [[criss-cross algorithm]] never cycles on linear programs.<ref>There are abstract optimization problems, called [[oriented matroid]] programs, on which Bland's rule cycles (incorrectly) while the [[criss-cross algorithm]] terminates correctly.</ref>
History-based pivot rules such as [[Zadeh's rule]] and [[Cunningham's rule]] also try to circumvent the issue of stalling and cycling by keeping track how often particular variables are being used, and then favor such variables that have been used least often.
|