Content deleted Content added
m Removing link(s): Wikipedia:Articles for deletion/M. Alex O. Vasilescu closed as delete (XFDcloser) |
m General fixes, removed a comma from the start of a reference |
||
Line 18:
Historically, MPCA has been referred to as "M-mode PCA", a terminology which was coined by Peter Kroonenberg in 1980.<ref name="Kroonenberg1980"/> In 2005, Vasilescu and [[Demetri Terzopoulos|Terzopoulos]] introduced the Multilinear PCA<ref name="MPCA-MICA2005">M. A. O. Vasilescu, D. Terzopoulos (2005) [http://www.media.mit.edu/~maov/mica/mica05.pdf "Multilinear Independent Component Analysis"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."</ref> terminology as a way to better differentiate between linear and multilinear tensor decomposition, as well as, to better differentiate between the work<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a"/><ref name="Vasilescu2003"/><ref name="Vasilescu2004"/> that computed 2nd order statistics associated with each data tensor mode(axis), and subsequent work on Multilinear Independent Component Analysis<ref name="MPCA-MICA2005"/> that computed higher order statistics associated with each tensor mode/axis.
Multilinear PCA may be applied to compute the causal factors of data formation, or as signal processing tool on data tensors whose individual observation have either been vectorized,<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a">M.A.O. Vasilescu, [[Demetri Terzopoulos|
MPCA computes a set of orthonormal matrices associated with each mode of the data tensor which are analogous to the orthonormal row and column space of a matrix computed by the matrix SVD. This transformation aims to capture as high a variance as possible, accounting for as much of the variability in the data associated with each data tensor mode(axis).
Line 27:
== Feature selection ==
MPCA features: Supervised MPCA feature selection is used in object recognition<ref name="MPCA">
== Extensions ==
|