Utente:Vbrm/Sandbox/Cibernetica: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Vbrm (discussione | contributi)
Vbrm (discussione | contributi)
Riga 37:
Le necessità belliche favorirono la progettazione di sistemi complessi nei quali i problemi di controllo e quelli di comunicazione erano contemporaneamente presenti. Nei [[sistema di puntamento|sistemi di puntamento]] antiaereo, ad esempio, la velocità di reazione richiesta dalla rapidità del volo aereo imponeva l'automazione di funzioni precedentemente svolte da operatori umani; ora la rilevazione della posizione del bersaglio era affidata al [[radar]], mentre il puntamento delle armi veniva gestito da servomeccanismi. La velocità dei bersagli poneva anche il problema di dirigere il tiro in modo [[predizione|predittivo]], cioè non verso la posizione attuale del bersaglio, ma verso quella stimata nella quale, nel prossimo futuro, fosse massima la probabilita' di trovarlo al momento dell'impatto con il proiettile.
Sia il MIT che i Bell Labs lavorarono per il governo USA alla soluzione dei molti problemi tecnici posti dalla progettazione di questi apparati. Al MIT, all'inizio degli anni '40, Wiener affrontò il problema con la collaborazione dell'ingegnere J. Bigelow; da questa attività nacque la consapevolezza sulla pervasività della retroazione e sulla sua funzione nei meccanismi orientati al raggiungimento di un fine<ref>{{cita|Hellman 1982}}, pagg. 144 - 152</ref><ref>Peter Galison, ''[[http://www.jstor.org/stable/1343893 The Ontology of the Enemy: Norbert Wiener and the Cybernetic Vision]]'', Critical Inquiry, Vol. 21, No. 1 (Autumn, 1994), pp. 228-266, University of Chicago Press</ref><ref>Anche un precursore britannico della cibernetica, [[Kenneth Craik]], lavorò all'automazione del tiro contraereo per il suo paese, analizzando il funzionamento dei meccanismi di retroazione; v. {{cita|Cordeschi 1998}}, pagg. 186 - 188</ref>.
Per eliminare dai segnali ricevuti dal radar il [[rumore (elettronica)|rumore]] indesiderato ad esso sovrapposto, ed individuare la posizione futura del bersaglio mobile, sulla base delle informazioni deducibili dalla sua storia passata, Wiener sviluppò a questo scopo una [[filtro di Wiener|teoria unificata]] di [[filtro (elettronica)|filtraggio]] e di [[predizione]]<ref>D. A. Mindell, già citato, cap. 11</ref>, poi pubblicata nel [[1949]]<ref>N. Wiener, ''The Extrapolation, Interpolation, and Smoothing of Stationary Time Series'', Report of the Services 19, Research Project DIC-6037 MIT, February 1942; poi New York: Wiley, 1949. ISBN 0-262-73005-7. Risultati analoghi erano stati raggiunti indipendentemente, negli stessi anni, da [[Kolmogorov]]; v. {{cita|Wiener 1948/1961}}, Introduzione</ref>, basata sugli strumenti matematici statistici che egli aveva già usato negli studi sul [[moto browniano]]<ref>[http://www.ams.org/journals/bull/1966-72-01/S0002-9904-1966-11466-0/S0002-9904-1966-11466-0.pdf J. L. Doob, ''Wiener's work in probability theory'', Bulletin of The American Mathematical Society, vol 72 n. 1, 1966]</ref> e sull'[[analisi armonica]]<ref>[http://www.ams.org/journals/bull/1966-72-01/S0002-9904-1966-11470-2/S0002-9904-1966-11470-2.pdf P. Masani, ''Wiener's contribution to Generalized Harmonic Analysis, prediction theory and filter theory'', Bulletin of The American Mathematical Society, vol 72 n. 1, 1966]</ref><ref>J. J. Benedetto, [http://www.norbertwiener.umd.edu/NW/gha.pdf ''Generalized Harmonic Analysis and Gabor and wavelets systems'']</ref>.
 
NgliI ridultati di Wiener sul filtraggio era completamente basati sugli strumenti matematici statistici che egli aveva già usato negli studi sul [[moto browniano]]<ref>[http://www.ams.org/journals/bull/1966-72-01/S0002-9904-1966-11466-0/S0002-9904-1966-11466-0.pdf J. L. Doob, ''Wiener's work in probability theory'', Bulletin of The American Mathematical Society, vol 72 n. 1, 1966]</ref> e sull'[[analisi armonica]]<ref>[http://www.ams.org/journals/bull/1966-72-01/S0002-9904-1966-11470-2/S0002-9904-1966-11470-2.pdf P. Masani, ''Wiener's contribution to Generalized Harmonic Analysis, prediction theory and filter theory'', Bulletin of The American Mathematical Society, vol 72 n. 1, 1966]</ref><ref>J. J. Benedetto, [http://www.norbertwiener.umd.edu/NW/gha.pdf ''Generalized Harmonic Analysis and Gabor and wavelets systems'']</ref>. Negli stessi anni, sviluppando il lavoro già intrapreso ai Bell Labs, negli anni tra le due guerre, da studiosi come [[Harry Nyquist|Nyquist]] ed [[Ralph Hartley|Hartley]], . Finalmente, [[Claude Shannon|C. E. Shannon]], anch'egli dei Bell Labs, pubblicandopubblicò nel [[1948]] (lo stesso anno del libro di Wiener sulla cibernetica) i suoi due fondamentali articoli su ''A Mathematical Theory of Communication''<ref>Claude E. Shannon, [https://archive.org/stream/bellsystemtechni27amerrich#page/379/mode/1up ''A Mathematical Theory of Communication''], Bell System Technical Journal, vol. 27, luglio e ottobre 1948</ref>, che affrontavaaffrontavano tutte le questioni accennate, dando un fondamento teorico alle operazione di codificazione di un messaggio e fondando la moderna [[teoria dell'informazione]]. Nel lavoro sia di Shannon che di Wiener, la statistica ed il calcoloteoria delle probabilitàcomunicazioni costituisconodiviene lodefinitivamente strumentouna principescienza distatistica analisie probabilistica; lo stesso Shannon rese esplicitamente omaggio alla tradizione della [[meccanica statistica]] utilizzando il termine ''"[[entropia]]"''<ref>sembra su suggerimento di [[John von Neumann]], v. ad es. {{Cita web |url=http://www.eoht.info/page/Neumann-Shannon+anecdote |titolo = ''Neumann - Shannon anectode'' |editore = eoht.info |lingua = en |accesso = 3 ottobre 2016}}; Shannon ha però sostanzialmente negato questa circostanza, v. {{Cita web |url=http://ethw.org/Oral-History:Claude_E._Shannon |titolo = ''Claude E. Shannon: An Interview Conducted by Robert Price, 28 July 1982'' |editore = Engineering and Techology History Wiki - IEEE History Center, The Institute of Electrical and Electronics Engineers, Inc. |lingua = en |accesso = 19 settembre 2016 }}</ref> come sinonimo di "quantità di informazione". Wiener poteva generalizzare quest'affermazione dicendo che ''la teoria degli automi sensibili'' (cioè lo studio delle macchine che ) ''è una teoria statistica''<ref>{{cita|Wiener 1948/1961}}, Introduzione</ref>
 
La nascita delle '''[[storia del computer|macchine calcolatrici]]''' è un processo che ha avuto le sue radici concettuali nei secoli precedenti al [[novecento]], ma che di fatto ha iniziato a produrre risultati significativi con la disponibilità dei primi dispositivi [[relais|elettromeccanici]] e, soprattutto, [[Valvola termoionica|elettronici a vuoto]]. Nei decenni tra le due guerre assistiamo ad uno sviluppo tecnologico impetuoso che portò alla costruzione, durante la II guerra mondiale, di macchine calcolatrici pienamente funzionanti, fondamentali per la soluzione di importanti problemi militari. Tuttavia, in questo processo un ruolo fondamentale fu svolto da una intuizione che proveniva da un ambito apparentemente lontano, quello delle ricerche sulla [[logica]] ed i [[fondamenti della matematica]]. Nel [[1936]], infatti, [[Alan Turing]] pubblicò il suo lavoro ''On Computable Numbers, with an Application to the Entscheidungsproblem'',<ref>{{Cita news|cognome= Turing |nome= A. M. |anno= 1937 |titolo= On Computable Numbers, with an Application to the Entscheidungsproblem |annooriginale= Delivered to the Society November 1936 |periodico= Proceedings of the London Mathematical Society |serie= 2 |volume= 42 |pp= 230–65 | doi= 10.1112/plms/s2-42.1.230 |url= http://www.comlab.ox.ac.uk/activities/ieg/e-library/sources/tp2-ie.pdf |cid= harv }} e {{Cita news|cognome= Turing |nome= A.M. |datapubblicazione= 1937 |titolo= On Computable Numbers, with an Application to the Entscheidungsproblem: A correction |periodico= Proceedings of the London Mathematical Society |serie= 2 |volume= 43 |pp= 544–6 | doi = 10.1112/plms/s2-43.6.544 |anno= 1938 }}</ref> nel quale definiva un modello di macchina calcolatrice, oggi nota come [[macchina di Turing]], per analizzare il concetto logico-matematico di “[[Teoria della calcolabilità|computabilità]]”. Questa macchina, anche se di livello astratto, e pensata per scopi esclusivamente teorici, rappresenta tuttavia il modello del moderno calcolatore elettronico digitale. Questo può essere considerato definitivamente nato negli USA con le macchine [[ENIAC]] ed [[EDVAC]]; un report del [[1945]], redatto da [[John von Neumann]]<ref>{{Cita pubblicazione|cognome= von Neumann |nome= John |wkautore= John von Neumann |titolo= ''First Draft of a Report on the EDVAC'' |anno= 1945 |url= https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1 |accesso= 24 agosto 2016}} </ref>, che descrive il funzionamento del secondo, definisce un [[architettura di von Neumann|modello di architettura]], detto appunto di von Neumann<ref>la paternità dell'architettura delle macchine citate va tuttavia attribuita all'intero gruppo di progetto, guidato da [[John Mauchly]] e [[J. Presper Eckert]].</ref>, seguito da praticamente tutti gli elaboratori prodotti da allora<ref>la principale alternativa è rappresentata dalla cosiddetta [[architettura Harvard]], la cui paternità è riconducibile ad [[Howard Aiken]], anch'egli interessato ai primi sviluppi della cibernetica</ref>. È interessante notare come von Neumann fosse ben conscio dell'influenza del lavoro di Turing sullo sviluppo successivo delle macchine calcolatrici automatiche<ref>B. Randell, ‘''On Alan Turing and the Origins of Digital Computers''', in Meltzer, B., Michie, D. (a cura di), Machine Intelligence 7, Edinburgh, Edinburgh University Press, 1972, pag. 10</ref>.