Content deleted Content added
short description |
m →Definition: Journal cites:, added 1 PMID |
||
Line 10:
By analogy with the classical conditional entropy, one defines the conditional quantum entropy as <math>S(A|B)_\rho \ \stackrel{\mathrm{def}}{=}\ S(AB)_\rho - S(B)_\rho</math>.
An equivalent operational definition of the quantum conditional entropy (as a measure of the [[quantum communication]] cost or surplus when performing [[quantum state]] merging) was given by [[Michał Horodecki]], [[Jonathan Oppenheim]], and [[Andreas Winter]].<ref>{{Cite journal|last=Horodecki|first=Michał|last2=Oppenheim|first2=Jonathan|last3=Winter|first3=Andreas|title=Partial quantum information|journal=Nature|volume=436|issue=7051|pages=673–676|arxiv=quant-ph/0505062|doi=10.1038/nature03909|bibcode=2005Natur.436..673H|year=2005|pmid=16079840}}</ref>
==Properties==
|