Content deleted Content added
review complete: rm already linked. curate EL. |
Citation bot (talk | contribs) m Add: volume, journal. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Activated by User:Neko-chan | Category:Computer memory | via #UCB_Category |
||
Line 9:
== History ==
[[File:SWAC 003.jpg|thumb|Memory pattern on [[SWAC (computer)|SWAC]] Williams tube CRT in 1951]]
Computer researchers{{who|date=July 2017}} had long discussed the theoretical advantages of a framebuffer, but were unable to produce a machine with sufficient [[computer memory|memory]] at an economically practicable cost.{{citation needed|date=August 2017}}<ref name="Gaboury">{{Cite journal|last=Gaboury|first=J.|date=2018-03-01|title=The random-access image: Memory and the history of the computer screen|journal=Grey Room|volume=70|url=https://escholarship.org/uc/item/0b3873pn|issue=70|pages=24–53|doi=10.1162/GREY_a_00233|issn=1526-3819}}</ref> In 1947, the [[Manchester Baby]] computer used a [[Williams tube]], later the Williams-Kilburn tube, to store 1024 bits on a [[cathode-ray tube|cathode-ray tube (CRT)]] memory and displayed on a second CRT.<ref>{{Cite journal|last=Williams|first=F. C.|last2=Kilburn|first2=T.|date=March 1949|title=A storage system for use with binary-digital computing machines|url=https://ieeexplore.ieee.org/document/5241129|journal=Proceedings of the IEE - Part III: Radio and Communication Engineering|volume=96|issue=40|pages=81–|doi=10.1049/pi-3.1949.0018}}</ref><ref>{{Cite web|url=http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/birth/manchestercomputers/mark1/documents/report1947cover.html|title=Kilburn 1947 Report Cover Notes (Digital 60)|website=curation.cs.manchester.ac.uk|access-date=2019-04-26}}</ref> Other research labs were exploring these techniques with [[MIT Lincoln Laboratory]] achieving a 4096 display in 1950.<ref name="Gaboury" />
A color scanned display was implemented in the late 1960s, called the [[Brookhaven National Laboratory|Brookhaven]] RAster Display (BRAD), which used a [[drum memory]] and a television monitor.<ref>{{citation |author1=D. Ophir |author2=S. Rankowitz |author3=B. J. Shepherd |author4=R. J. Spinrad |title=BRAD: The Brookhave Raster Display |work=Communications of the ACM |volume=11 |number=6 |date=June 1968 |pages=415–416 |doi=10.1145/363347.363385}}</ref> In 1969, A. Michael Noll of [[Bell Labs]] implemented a scanned display with a frame buffer, using [[magnetic-core memory]].<ref>{{cite journal |last=Noll |first=A. Michael |title=Scanned-Display Computer Graphics |
In the early 1970s, the development of [[MOS memory]] ([[metal-oxide-semiconductor]] memory) [[Integrated circuit|integrated-circuit]] chips, particularly [[large-scale integration|high-density]] [[DRAM]] (dynamic [[random-access memory]]) chips with at least 1{{nbsp}}[[kibibit|kb]] memory, made it practical to create, for the first time, a [[digital memory]] system with framebuffers capable of holding a standard video image.<ref name="Shoup_SuperPaint"/><ref>{{cite conference |last1=Goldwasser |first1=S.M. |title=Computer Architecture For Interactive Display Of Segmented Imagery |conference=Computer Architectures for Spatially Distributed Data |date=June 1983 |publisher=[[Springer Science & Business Media]] |isbn=9783642821509 |pages=75-94 (81) |url=https://books.google.com/books?id=8MuoCAAAQBAJ&pg=PA81}}</ref> This led to the development of the [[SuperPaint]] system by [[Richard Shoup (programmer)|Richard Shoup]] at [[Xerox PARC]] in 1972.<ref name="Shoup_SuperPaint">{{cite web |url=http://accad.osu.edu/~waynec/history/PDFs/Annals_final.pdf |archive-url=https://web.archive.org/web/20040612215245/http://accad.osu.edu/~waynec/history/PDFs/Annals_final.pdf |archive-date=2004-06-12 |title=SuperPaint: An Early Frame Buffer Graphics System |author=Richard Shoup |publisher=IEEE |work=Annals of the History of Computing |year=2001
In 1974, [[Evans & Sutherland]] released the first commercial framebuffer, the Picture System,<ref>{{citation |title=Picture System |url=http://s3data.computerhistory.org/brochures/evanssutherland.3d.1974.102646288.pdf |publisher=Evans & Sutherland |access-date=2017-12-31}}</ref> costing about $15,000. It was capable of producing resolutions of up to 512 by 512 pixels in 8-bit [[grayscale]], and became a boon for graphics researchers who did not have the resources to build their own framebuffer. The [[New York Institute of Technology]] would later create the first 24-bit color system using three of the Evans & Sutherland framebuffers.<ref name="NYIT-History">{{cite web |url=https://www.cs.cmu.edu/~ph/nyit/masson/nyit.html |title=History of the New York Institute of Technology Graphics Lab |accessdate=2007-08-31}}</ref> Each framebuffer was connected to an [[RGB color model|RGB]] color output (one for red, one for green and one for blue), with a Digital Equipment Corporation PDP 11/04 [[minicomputer]] controlling the three devices as one.
Line 96:
;Notes
{{Refbegin}}
* {{cite web |url=http://accad.osu.edu/~waynec/history/PDFs/14_paint.pdf |title=Digital Paint Systems: Historical Overview |author=Alvy Ray Smith |work=Microsoft Tech Memo 14 |date=May 30, 1997
* {{cite web |url=http://accad.osu.edu/~waynec/history/lesson15.html |title=Hardware advancements |work=A Critical History of Computer Graphics and Animation |publisher=The Ohio State University |author=Wayne Carlson |year=2003 |url-status=dead |archiveurl=https://web.archive.org/web/20120314015613/http://design.osu.edu/carlson/history/lesson15.html |archivedate=2012-03-14 }}
* {{cite web |url=http://accad.osu.edu/~waynec/history/PDFs/paint.pdf |title=Digital Paint Systems: An Anecdotal and Historical Overview |author=Alvy Ray Smith |publisher=IEEE Annals of the History of Computing |year=2001
{{Refend}}
|