Content deleted Content added
→Backward probabilities: see WP:NOTED, MOS:NOTED, and WP:OPED |
|||
Line 145:
To understand this, we note that <math>\mathbf{f_{0:t}}(i) \cdot \mathbf{b_{t:T}}(i)</math> provides the probability for observing the given events in a way that passes through state <math>x_i</math> at time t. This probability includes the forward probabilities covering all events up to time t as well as the backward probabilities which include all future events. This is the numerator we are looking for in our equation, and we divide by the total probability of the observation sequence to normalize this value and extract only the probability that <math>X_t=x_i</math>. These values are sometimes called the "smoothed values" as they combine the forward and backward probabilities to compute a final probability.
The values <math>\mathbf{\gamma_t}(i)</math> thus provide the probability of being in each state at time t. As such, they are useful for determining the most probable state at any time.
==Example ==
|