Power-flow study: Difference between revisions

Content deleted Content added
Line 30:
: <math>0 = -P_{i} + \sum_{k=1}^N |V_i||V_k|(G_{ik}\cos\theta_{ik}+B_{ik}\sin\theta_{ik})</math>
 
where <math>P_{i}</math> is the net active power injected at bus ''i'', <math>G_{ik}</math> is the real part of the element in the [[Ybus matrix|bus admittance matrix]] Y<sub>BUS</sub> corresponding to the <math>i_{th}</math> row and <math>k_{th}</math> column, <math>B_{ik}</math> is the imaginary part of the element in the Y<sub>BUS</sub> corresponding to the <math>i_{th}</math> row and <math>k_{th}</math> column and <math>\delta_theta_{ik}</math> is the difference in voltage angle between the <math>i_{th}</math> and <math>k_{th}</math> buses (<math>\theta_{ik}=\theta_i-\theta_k</math>). The reactive power balance equation is:
 
: <math>0 = -Q_{i} + \sum_{k=1}^N |V_i||V_k|(G_{ik}\sin\theta_{ik}-B_{ik}\cos\theta_{ik})</math>