Content deleted Content added
style and tone |
|||
Line 1:
{{refimprove|date=December 2009}}
'''Explicit and implicit methods''' are approaches used in [[numerical analysis]] for obtaining numerical approximations to the solutions of time-dependent [[ordinary differential equation|ordinary]] and [[partial differential equation]]s, as is required in [[computer simulation]]s of [[Process (science)|physical processes]]. ''Explicit methods'' calculate the state of a system at a later time from the state of the system at the current time, while ''implicit methods'' find a solution by solving an equation involving both the current state of the system and the later one. Mathematically, if <math>Y(t)</math> is the current system state and <math>Y(t+\Delta t)</math> is the state at the later time (<math>\Delta t</math> is a small time step), then, for an explicit method
: <math>Y(t+\Delta t) = F(Y(t))\,</math>
while for an implicit method one solves an equation
Line 8 ⟶ 6:
to find <math>Y(t+\Delta t).</math>
Since the implicit method cannot be carried out for each kind of differential operator, it is sometimes advisable to make use of the so called operator splitting method, which means that the differential operator is rewritten as the sum of two complementary operators
:<math>Y(t+\Delta t) = F(Y(t+\Delta t))+G(Y(t)),\,</math>
while one is treated explicitly and the other implicitly.
For usual applications the implicit term is chosen to be linear while the explicit term can be nonlinear. This combination of the former method is called
==Illustration using the forward and backward Euler methods==
|