Content deleted Content added
Line 14:
==Definitions==
Let <math>X</math> denote a random variable with
:<math>\forall f \in \mathcal{H}, \forall x \in \Omega \qquad \langle f, k(x,\cdot) \rangle_\mathcal{H} = f(x).</math>
Line 21:
===Kernel embedding===
The kernel embedding of the distribution <math>P
:<math>\mu_X := \mathbb{E}_X [k(X, \cdot) ] = \mathbb{E}_X [\varphi(X) ] = \int_\Omega \varphi(x) \ \mathrm{d}P(x) </math>
Line 33:
===Joint distribution embedding===
If <math>Y</math> denotes another random variable (for simplicity, assume the co-___domain of <math>Y</math> is also <math>\Omega</math> with the same kernel <math>k</math> which satisfies <math> \langle \varphi(x) \otimes \varphi(y), \varphi(x') \otimes \varphi(y') \rangle = k(x,x') \otimes k(y,y')</math>), then the [[Joint probability distribution|joint distribution]] <math> P(
:<math> \mathcal{C}_{XY} = \mathbb{E}_{XY} [\varphi(X) \otimes \varphi(Y)] = \int_{\Omega \times \Omega} \varphi(x) \otimes \varphi(y) \ \mathrm{d} P(x,y) </math>
Line 46:
===Conditional distribution embedding===
Given a [[conditional distribution]] <math>P(
:<math>\mu_{Y \mid x} = \mathbb{E}_{Y \mid x} [ \varphi(Y) ] = \int_\Omega \varphi(y) \ \mathrm{d}P(y \mid x) </math>
Note that the embedding of <math>P(
:<math>\begin{cases} \mathcal{C}_{Y\mid X}: \mathcal{H} \to \mathcal{H} \\ \mathcal{C}_{Y\mid X} = \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1} \end{cases}</math>
|