Content deleted Content added
Mersenne56 (talk | contribs) m Fixed typo |
Mersenne56 (talk | contribs) Multiple changes to address criticism |
||
Line 1:
{{essay-like|date=March 2020}}
'''PDE-constrained optimization''' is a subset of [[mathematical optimization]] where at least one of the [[Constrained optimization|constraints]] may be expressed as a [[partial differential equation]].<ref>{{Cite journal|last=|first=|date=2014|editor-last=Leugering|editor-first=Günter|editor2-last=Benner|editor2-first=Peter|editor3-last=Engell|editor3-first=Sebastian|editor4-last=Griewank|editor4-first=Andreas|editor5-last=Harbrecht|editor5-first=Helmut|editor6-last=Hinze|editor6-first=Michael|editor7-last=Rannacher|editor7-first=Rolf|editor8-last=Ulbrich|editor8-first=Stefan|title=Trends in PDE Constrained Optimization|url=https://link.springer.com/book/10.1007/978-3-319-05083-6|journal=International Series of Numerical Mathematics|language=en-gb|publisher=Springer|volume=|pages=|doi=10.1007/978-3-319-05083-6|issn=0373-3149|via=}}</ref> Typical domains where these problems arise
== Applications ==
Line 11 ⟶ 8:
* [[Mathematical finance]]<ref>{{Cite journal|last=Egger|first=Herbert|last2=Engl|first2=Heinz W.|date=2005|title=Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates|url=https://iopscience.iop.org/article/10.1088/0266-5611/21/3/014/pdf|journal=Inverse Problems|volume=21|issue=3|pages=1027-1045|via=}}</ref>
=== Optimal control of bacterial chemotaxis system ===
The following example comes from p. 20-21 of Pearson.<ref name=":0" /> [[Chemotaxis]] is the movement of an organism in response to an external chemical stimulus. One problem of particular interest is in managing the spatial dynamics of bacteria that are subject to chemotaxis to achieve some desired result. For a cell density <math>z(t,{\bf x})</math> and concentration density <math>c(t,{\bf x})</math> of a [[Chemotaxis#Chemoattractants and chemorepellents|chemoattractant]], it is possible to formulate a boundary control problem:<math display="block">\min_{z,c,u} \; {1\over{2}}\int_{\Omega}\left[z(T,{\bf x})-\widehat{z} \right]^{2} + {\gamma_{c}\over{2}} \int_{\Omega}\left[c(T,{\bf x})-\widehat{c} \right]^{2} + {\gamma_{u}\over{2}}\int_{0}^{T}\int_{\partial\Omega}u^{2}</math>where <math>\widehat{z}</math> is the ideal cell density, <math>\widehat{c}</math> is the ideal concentration density, and <math>u</math> is the control variable. This objective function is subject to the dynamics:<math display="block">\begin{aligned}
{\
{\
\end{aligned}</math>where <math>\Delta</math> is the [[Laplace operator]].
== See also ==
Line 32 ⟶ 28:
* Antil, Harbir; Kouri, Drew. P; Lacasse, Martin-D.; Ridzal, Denis (2018). ''[https://www.springer.com/gp/book/9781493986354 Frontiers in PDE-Constrained Optimization]''. The IMA Volumes in Mathematics and its Applications, Springer. {{ISBN|978-1493986354|}}.
* Tröltzsch, Fredi (2010). ''[https://bookstore.ams.org/gsm-112 Optimal Control of Partial Differential Equations: Theory, Methods, and Applications]''. Graduate Studies in Mathematics, American Mathematical Society. {{ISBN|978-0-8218-4904-0|}}.
|