Content deleted Content added
m reference needed |
rewrite intro, add details |
||
Line 1:
{{Infobox algorithm|image = |data = [[Graph (data structure)|Graph]]|time = <math>O(E \sqrt V)</math>|class = Graph algorithm|space = <math>O(V)</math>}}In [[computer science]], the '''Hopcroft–Karp algorithm''' (sometimes more accurately called the '''Hopcroft–Karp–Karzanov algorithm''')<ref>{{harvtxt|Gabow|2017}}; {{harvtxt|Annamalai|2018}}</ref> is an [[algorithm]] that takes as input a [[bipartite graph]] and produces as output a [[Maximum cardinality matching|maximum cardinality matching]] – a set of as many edges as possible with the property that no two edges share an endpoint. It runs in <math>O(|E|\sqrt{|V|})</math> time in the [[worst case analysis|worst case]], where <math>E</math> is set of edges in the graph, <math>V</math> is set of vertices of the graph, and it is assumed that <math>|E|=\Omega(|V|)</math>. In the case of [[dense graph]]s the time bound becomes <math>O(|V|^{2.5})</math>, and for sparse [[random graph]]s it runs in near-linear (in |E|) time{{reference needed}}.
The algorithm was found by {{harvs|first1=John|last1=Hopcroft|author1-link=John Hopcroft|first2=Richard|last2=Karp|author2-link=Richard Karp|txt|year=1973}} and independently by {{harvs|first=Alexander|last=Karzanov|authorlink=Alexander V. Karzanov|year=1973|txt}}.{{sfnp|Dinitz|2006}} As in previous methods for matching such as the [[Hungarian algorithm]] and the work of {{harvtxt|Edmonds|1965}}, the Hopcroft–Karp algorithm repeatedly increases the size of a partial matching by finding ''augmenting paths
==Augmenting paths==
|