Multivariate kernel density estimation: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
Line 1:
[[Kernel density estimation]] is a [[nonparametric]] technique for [[density estimation]] i.e., estimation of [[probability density function]]s, which is one of the fundamental questions in [[statistics]]. It can be viewed as a generalisation of [[histogram]] density estimation with improved statistical properties. Apart from histograms, other types of density estimators include [[parametric statistics|parametric]], [[spline interpolation|spline]], [[wavelet]] and [[Fourier series]]. Kernel density estimators were first introduced in the scientific literature for [[univariate]] data in the 1950s and 1960s<ref>{{Cite journal| doi=10.1214/aoms/1177728190 | last=Rosenblatt | first=M.| title=Remarks on some nonparametric estimates of a density function | journal=Annals of Mathematical Statistics | year=1956 | volume=27 | issue=3 | pages=832–837| doi-access=free }}</ref><ref>{{Cite journal| doi=10.1214/aoms/1177704472| last=Parzen | first=E.| title=On estimation of a probability density function and mode | journal=Annals of Mathematical Statistics| year=1962 | volume=33 | issue=3 | pages=1065–1076| doi-access=free }}</ref> and subsequently have been widely adopted. It was soon recognised that analogous estimators for multivariate data would be an important addition to [[multivariate statistics]]. Based on research carried out in the 1990s and 2000s, '''multivariate kernel density estimation''' has reached a level of maturity comparable to its univariate counterparts.<ref name="simonoff1996">{{Cite book| author=Simonoff, J.S. | title=Smoothing Methods in Statistics | publisher=Springer | year=1996 | isbn=978-0-387-94716-7}}</ref>
 
==Motivation==
Line 106:
[[File:Old Faithful Geyser KDE with plugin bandwidth.png|thumb|250px|alt=Old Faithful Geyser data kernel density estimate with plug-in bandwidth matrix.|Old Faithful Geyser data kernel density estimate with plug-in bandwidth matrix.]]
 
The [https://cran.r-project.org/web/packages/ks/index.html ks package]<ref>{{Cite journal| author1=Duong, T. | title=ks: Kernel density estimation and kernel discriminant analysis in R | journal=Journal of Statistical Software | year=2007 | volume=21 | issue = 7 | doi=10.18637/jss.v021.i07 | doi-access=free }}</ref> in [[R programming language|R]] implements the plug-in and smoothed cross validation selectors (amongst others). This dataset (included in the base distribution of R) contains
272 records with two measurements each: the duration time of an eruption (minutes) and the
waiting time until the next eruption (minutes) of the [[Old Faithful Geyser]] in Yellowstone National Park, USA.
Line 171:
: <math>\operatorname{MIAE} (\mathbf{H}) = \operatorname{E}\, \int |\hat{f}_\mathbf{H} (\mathbf{x}) - f(\mathbf{x})| \, d\mathbf{x}.</math>
 
Its mathematical analysis is considerably more difficult than the MISE ones. In practice, the gain appears not to be significant.<ref>{{cite journal | author1=Hall, P. | author2=Wand, M.P. | title=Minimizing L<sub>1</sub> distance in nonparametric density estimation | journal = Journal of Multivariate Analysis | year=1988 | volume=26 | pages=59–88 | doi=10.1016/0047-259X(88)90073-5| doi-access=free }}</ref> The ''L<sub>∞</sub>'' norm is the Mean Uniform Absolute Error
 
: <math>\operatorname{MUAE} (\mathbf{H}) = \operatorname{E}\, \operatorname{sup}_{\mathbf{x}} |\hat{f}_\mathbf{H} (\mathbf{x}) - f(\mathbf{x})|.</math>
Line 183:
: <math>\operatorname{MH} (\mathbf{H}) = \operatorname{E} \int (\hat{f}_\mathbf{H} (\mathbf{x})^{1/2} - f(\mathbf{x})^{1/2})^2 \, d\mathbf{x} .</math>
 
The KL can be estimated using a cross-validation method, although KL cross-validation selectors can be sub-optimal even if it remains [[Consistent estimator|consistent]] for bounded density functions.<ref>{{cite journal | author=Hall, P. | title=On Kullback-Leibler loss and density estimation | journal=Annals of Statistics | volume=15 | issue=4 | year=1989 | pages=589–605 | doi=10.1214/aos/1176350606| doi-access=free }}</ref> MH selectors have been briefly examined in the literature.<ref>{{cite journal | author1=Ahmad, I.A. | author2=Mugdadi, A.R. | title=Weighted Hellinger distance as an error criterion for bandwidth selection in kernel estimation | journal=Journal of Nonparametric Statistics | volume=18 | issue=2 | year=2006 | pages=215–226 | doi=10.1080/10485250600712008}}</ref>
All these optimality criteria are distance based measures, and do not always correspond to more intuitive notions of closeness, so more visual criteria have been developed in response to this concern.<ref>{{cite journal | author1=Marron, J.S. | author2=Tsybakov, A. | title=Visual error criteria for qualitative smoothing | journal = Journal of the American Statistical Association | year=1996 | volume=90 | issue=430 | pages=499–507 | doi=10.2307/2291060 | jstor=2291060}}</ref>
Line 189:
== Objective and data-driven kernel selection ==
[[File:Empirical Characteristic Function.jpg|alt=An x-shaped region of empirical characteristic function in Fourier space.|thumb|Demonstration of the filter function <math>I_{\vec{A}}(\vec{t})</math>. The square of the empirical distribution function <math>|\hat{\varphi}|^2</math> from ''N''=10,000 samples of the ‘transition distribution’ discussed in Section 3.2 (and shown in Fig. 4), for <math>|\hat{\varphi}|^2 \ge 4(N-1)N^{-2}</math>. There are two color schemes present in this figure. The predominantly dark, multicolored colored ‘X-shaped’ region in the center corresponds to values of <math>|\hat{\varphi}|^2</math> for the lowest contiguous hypervolume (the area containing the origin); the colorbar at right applies to colors in this region. The lightly-colored, monotone areas away from the first contiguous hypervolume correspond to additional contiguous hypervolumes (areas) with <math>|\hat{\varphi}|^2 \ge 4(N-1)N^{-2}</math>. The colors of these areas are arbitrary and only serve to visually differentiate nearby contiguous areas from one another.]]
Recent research has shown that the kernel and its bandwidth can both be optimally and objectively chosen from the input data itself without making any assumptions about the form of the distribution.<ref name=":0">{{Cite journal|last = Bernacchia|first = Alberto|last2 = Pigolotti|first2 = Simone|date = 2011-06-01|title = Self-consistent method for density estimation|journal = Journal of the Royal Statistical Society, Series B|language = en|volume = 73|issue = 3|pages = 407–422|doi = 10.1111/j.1467-9868.2011.00772.x|issn = 1467-9868|arxiv = 0908.3856}}</ref> The resulting kernel density estimate converges rapidly to the true probability distribution as samples are added: at a rate close to the <math>n^{-1}</math> expected for parametric estimators.<ref name=":0" /><ref name=":1">{{Cite journal|last = O’Brien|first = Travis A.|last2 = Collins|first2 = William D.|last3 = Rauscher|first3 = Sara A.|last4 = Ringler|first4 = Todd D.|date = 2014-11-01|title = Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method|journal = Computational Statistics & Data Analysis|volume = 79|pages = 222–234|doi = 10.1016/j.csda.2014.06.002|doi-access = free}}</ref><ref name=":22">{{Cite journal|last = O’Brien|first = Travis A.|last2 = Kashinath|first2 = Karthik|last3 = Cavanaugh|first3 = Nicholas R.|last4 = Collins|first4 = William D.|last5 = O’Brien|first5 = John P.|title = A fast and objective multidimensional kernel density estimation method: fastKDE|journal = Computational Statistics & Data Analysis|volume = 101|pages = 148–160|doi = 10.1016/j.csda.2016.02.014|year = 2016|url = https://escholarship.org/content/qt9g56181p/qt9g56181p.pdf?t=p7qvyp}}</ref> This kernel estimator works for univariate and multivariate samples alike. The optimal kernel is defined in Fourier space—as the optimal damping function <math>\hat{\psi_h}(\vec{t})</math> (the Fourier transform of the kernel <math>\hat{K}(\vec{x})</math> )-- in terms of the Fourier transform of the data <math>\hat{\varphi}(\vec{t})</math>, the ''[[Characteristic function (probability theory)|empirical characteristic function]]'' (see [[Kernel density estimation]]):
 
<math>\hat{\psi_h}(\vec{t}) \equiv \frac{N}{2(N-1)} \left[ 1 + \sqrt{1 - \frac{4(N-1)}{N^2 |\hat{\varphi}(\vec{t})|^2}} I_{\vec{A}}(\vec{t}) \right]</math> <ref name=":22"/>