Content deleted Content added
Line 36:
From <math>U \sim \mathrm{Unif}[0,1]</math>, we want to generate <math>X</math> with [[Cumulative distribution function|CDF]] <math>F_X(x).</math> We assume <math>F_X(x)</math> to be a strictly increasing function, which provides good intuition.
We want to see if we can find some strictly monotone transformation <math>T:[0,1]\mapsto \mathbb{R}</math>, such that <math>T(U)\overset{d}{=}X</math>
<math>F_X(x)=\Pr(X\leq x)=\Pr(T(U)\leq x) = \Pr(U\leq T^{-1}(x))=T^{-1}(x), \text{ for } x\in \mathbb{R},</math>
|